Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094206    DOI: 10.1088/1674-1056/27/9/094206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fractional squeezing-Hankel transform based on the induced entangled state representations

Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯)
Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Abstract  

Based on the fact that the quantum mechanical version of Hankel transform kernel (the Bessel function) is just the transform between |q,r> angle and (s,r'|, two induced entangled state representations are given, and working with them we derive fractional squeezing-Hankel transform (FrSHT) caused by the operator e-iα(a1a2+a1a2)e-iπa2a2, which is an entangled fractional squeezing transform operator. The additive rule of the FrSHT can be explicitly proved.

Keywords:  induced entangled state representation      entangled fractional squeezing transform      fractional squeezing-Hankel transform  
Received:  10 March 2018      Revised:  11 May 2018      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
  02.30.Gp (Special functions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11304126) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130532).

Corresponding Authors:  Cui-Hong Lv     E-mail:  lvch@mail.ujs.edu.cn

Cite this article: 

Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯) Fractional squeezing-Hankel transform based on the induced entangled state representations 2018 Chin. Phys. B 27 094206

[1] Kober H 1939 Q. J. Math. 10 45
[2] Namias V 1980 J. Inst. Math. Appl. 25 241
[3] Lv C H and Fan H Y 2010 Phys. Scr. 82 025004
[4] Mendlovic D, Ozaktas H M and Lohmann A W 1994 Appl. Opt. 33 6188
[5] Lv C H, Fan H Y and Jiang N Q 2010 Chin. Phys. B 19 120303
[6] Lv C H and Fan H Y 2011 Opt. Commun. 284 1925
[7] Zhao D M, Mao H, Liu H, Wang S, Jing F and Wei X F 2004 Opt. Commun. 236 225
[8] Du X and Zhao D M 2006 Appl. Opt. 45 9049
[9] Lv C H, Fan H Y and Li D W 2015 Chin. Phys. B 24 020301
[10] Fan H Y, Chen J H and Zhang P F 2015 Front. Phys. 10 101401
[11] Fan H Y and Fan Y 2002 Eur. Phys. J. D 21 233
[12] Fan H Y, Hu L Y and Wang J S 2008 J. Opt. Soc. Am. A 25 974
[13] Fan H Y and Lv C H 2009 J. Opt. Soc. Am. A 26 2306
[14] Fan H Y and Chen J H 2015 Front. Phys. 10 100301
[15] Dragoman D 2009 J. Opt. Soc. Am. A 26 274
[16] Povstenkoa Y 2013 Eur. Phys. J. -Spec. Top. 222 1767
[17] Gai Y Q, Wu D Z and Xu C J 2005 Acta Mech. Solida Sin. 18 142
[18] Jang T S, Kwon S H and Kim B J 2007 Ocean Eng. 34 678
[19] Szemela K 2015 Arch. Acoust. 40 223
[20] Yu L, Lu Y Y, Zeng X M, Huang M, Chen M, Huang W and Zhu Z 1998 Opt. Lett. 23 1158
[21] Du J M and Fan H Y 2013 Chin. Phys. B 22 060302
[22] Lv C H and Fan H Y 2010 Chin. Phys. Lett. 27 050301
[23] Yang Y and Fan H Y 2013 Chin. Phys. B 22 030306
[24] Fan H Y 2003 Phys. Lett. A 313 343
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[9] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[15] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
No Suggested Reading articles found!