Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 093601    DOI: 10.1088/1674-1056/27/9/093601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional study on the bimetallic TimZrn (n+m ≤ 5) clusters and their interactions with H2

Ge Zhang(张鸽), Yong Sheng(盛勇)
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Abstract  

Equilibrium geometries, stabilities, and electronic properties of small TimZrn (n+m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials (VIP), and vertical electron affinities (VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H2 when compared with the others except Ti3Zr, which shows the highest activity. The magnetic moments of TimZrn and TimZrnH2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti3Zr2.

Keywords:  density functional theory      bimetallic cluster      hydrogen chemisorption  
Received:  18 January 2018      Revised:  07 June 2018      Accepted manuscript online: 
PACS:  36.40.-c (Atomic and molecular clusters)  
  36.40.Jn (Reactivity of clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the Scientific Research Plan Foundation of Sichuan Education Department of China (Grant No. 2014JY0072).

Corresponding Authors:  Yong Sheng     E-mail:  shengyong69@163.com

Cite this article: 

Ge Zhang(张鸽), Yong Sheng(盛勇) Density functional study on the bimetallic TimZrn (n+m ≤ 5) clusters and their interactions with H2 2018 Chin. Phys. B 27 093601

[1] Schmid G 1992 Chem. Rev. 92 1709
[2] Lewis L N 1993 Chem. Rev. 93 2693
[3] Halperin W P 1986 Rev. Mod. Phys. 58 533
[4] Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371
[5] Ferligoj A 1997 Proc. 19th International Conference Information Technology Interfaces, June 17-20, 1997, Pula, Croatia, p. 253
[6] Liu S R, Zhai H J, Castro M and Wang L S 2003 J. Chem. Phys. 118 2108
[7] Sakurai M, Watanabe K, Sumiyama K and Suzuki K 1999 J. Chem. Phys. 111 235
[8] Bouderbala W and Boudjahem A G 2014 Physica B 454 217
[9] Rodríguez-Kessler P L and Ricardo-Chávez J L 2015 Chem. Phys. Lett. 622 34
[10] Javan M B 2015 J. Alloys Compd. 643 56
[11] Sosa-Hernández E M, Montejano-Carrizales J M and Alvarado-Leyva P G 2016 Eur. Phys. J. D 70 208
[12] Li W Y and Chen F Y 2014 Chin. Phys. B 23 117103
[13] Li T H, Wong P C, Chang S F, Tsai P H, Jang J S C and Huang J C 2017 Mat. Sci. Eng. C 75 1
[14] Oh M Y, Kim W G, Choe H C and Ko Y M 2009 Corros. Eng. Sci. Tec. 8 29
[15] María H A D, Juan M C, Beleń B B, Marcos F G and Javier S 2007 Chem. Mater. 19 4283
[16] Visintin A, Peretti H A, Tori C A and Triaca W E 2001 Int. J. Hydrogen Ene. 26 683
[17] Fukunaga T, Itoh K, Hashi K and Aoki K 2002 Appl. Phys. A 74[Suppl.] 957
[18] Idrobo J C, Öǧüt S and Jellinek J 2005 Phys. Rev. B 72 085445
[19] Martin S V, Pedro H H T, Umapada P, Jose F R S, Jose I R M and Jorge A A 2006 J. Phys. Chem. A 110 10274
[20] Medina J, Coss de R, Tapia A and Canto G 2010 Eur. Phys. J. B 76 427
[21] Sun H Q, Ren Y, Wu Z F and Xu Z 2015 Comput. Theor. Chem. 74 1062
[22] Turgut B, Sakir E, Masaru H and Shoichi T 2000 J. Phys. E 8 223
[23] Wang C C, Zhao R N and Hang J G 2006 J. Chem. Phys. 124 194301
[24] Zhao W J, Lei X L, Yan Y L, Yang Z and Luo Y H 2007 Acta Phys. Sin. 56 5209 (in Chinese)
[25] Du J G, Sun X Y and Jiang G 2009 Eur. Phys. J. D 55 111
[26] Hurtabo R B, Cortez-Valadez M, Gámez-Corrales R and Flores-Acosta M 2018 Comput. Theor. Chem. 32 1124
[27] Rodríguez-Kessler P L and Rodríguez-Domínguez A R 2016 J. Chem. Phys. A 120 2401
[28] Zhao G F, Sheng X F, Zhi L L, Sun J M and Gu Y Z 2009 J. Mol. Struc. Theochem. 908 40
[29] Chattaraj D, Bhattacharya S, Dash S and Majumder C 2016 J. Appl. Phys. 120 094301
[30] Sheng X F, Zhao G F and Zhi L L 2008 J. Phys. Chem. C 112 17828
[31] Kumar T J D, Weck P F and Balakrishnan N 2007 J. Phys. Chem. C 111 7494
[32] Tarakeshwar P, Kumar T J D and Balakrishnan N 2008 J. Phys. Chem. A 112 2846
[33] Shang M H, Wei S H and Zhu Y J 2009 J. Phys. Chem. C 113 1550
[34] Ge G X, Yan H X, Jing Q and Luo Y H 2011 J. Clust. Sci. 22 473
[35] Ling G 2012 J. Nanopart. Res. 14 957
[36] Zhong M M, Huang C and Wang G Z 2017 J. Alloys Compd. 725 388
[37] Wen J H, Chen G X, Zhang J M and Wu H 2018 J. Phys. Chem. Solids 115 84
[38] Wang Q, Li Q, Dai J F and Guo Y Q 2012 J. At. Mol. Phys. 29 437
[39] Andrae D, Haubermann U, Dolg M, Stoll H and Preub H 1990 Theor. Chim. Acta 77 123
[40] Weigend F and Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297
[41] Lombardi J R and Davis B 2002 Chem. Revs. 102 2431
[42] Salazar-Villanueva M, Hernández Tejeda P H, Pal U, Rivas-Silva J F, Rodríguez Mora J I and Ascencio J A 2006 J. Phys. Chem. A 110 10274
[43] Lide D R 2007 CRC Handbook Chem. Phys. (88th Edn.) (Boca Ration:CRC Press) p. 1024
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!