|
|
Numerical tests of theoretical models describing ionization of H(1s) atom by linearly polarized flat pulse of laser radiation |
Jarosław H Bauer1, Min Deng(邓敏)2 |
1 Katedra Fizyki Teoretycznej, Wydzia? Fizyki i Informatyki Stosowanej Uniwersytetu ?ódzkiego, Ul. Pomorska 149/153, PL-90-236 ?ód?, Poland;
2 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract We derive the well-known Coulomb correction factor for the Gordon-Volkov wave function describing an outgoing electron in the process of ionization in an intense laser field. Although rigorous treatment would limit its use only to laser fields much lower than the so-called barrier-suppression field, it appears that in practice the correction factor may be used also close to and even above this critical value of the laser field. We compare predictions of several analytical expressions describing ionization rate of the hydrogen atom in its ground state in the strong linearly polarized laser field. We also compare ionization probabilities obtained by integrating these ionization rates over a temporal envelope of the laser pulse with predictions based on the exact numerical solution to the time-dependent Schrödinger equation.
|
Received: 27 April 2018
Revised: 02 July 2018
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
Fund: Project supported by the University of ?ód?. |
Corresponding Authors:
Jarosław H Bauer, Min Deng
E-mail: bauer@uni.lodz.pl;dengm13@mails.tsinghua.edu.cn
|
Cite this article:
Jaros?aw H Bauer, Min Deng(邓敏) Numerical tests of theoretical models describing ionization of H(1s) atom by linearly polarized flat pulse of laser radiation 2018 Chin. Phys. B 27 093202
|
[1] |
Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1945
|
[2] |
Keldysh L V 1965 Sov. Phys.-JETP 20 1307
|
[3] |
Perelomov A M, Popov V S and Terent'ev M V 1966 Zh. Eksp. Teor. Fiz. 50 1393
|
[4] |
Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys.-JETP 23 924
|
[5] |
Perelomov A M, Popov V S and Terent'ev M V 1966 Zh. Eksp. Teor. Fiz. 51 309
|
[6] |
Perelomov A M, Popov V S and Terent'ev M V 1967 Sov. Phys.-JETP 24 207
|
[7] |
Perelomov A M and Popov V S 1967 Zh. Eksp. Teor. Fiz. 52 514
|
[8] |
Perelomov A M and Popov V S 1967 Sov. Phys.-JETP 25 336
|
[9] |
Faisal F H M 1973 J. Phys. B:At. Mol. Phys. 6 L89
|
[10] |
Reiss H R 1980 Phys. Rev. A 22 1786
|
[11] |
Reiss H R 1992 Prog. Quantum Electron. 16 1
|
[12] |
Gribakin G F and Yu M 1997 Phys. Rev. A 55 3760
|
[13] |
Popov V S 2004 Usp. Fiz. Nauk 174 921
|
[14] |
Popov V S 2004 Phys. Usp. 47 855
|
[15] |
Becker A and Faisal F H M 2005 J. Phys. B:At. Mol. Opt. Phys. 38 R1
|
[16] |
Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B:At. Mol. Opt. Phys. 39 R203
|
[17] |
Popruzhenko S V 2014 J. Phys. B:At. Mol. Opt. Phys. 47 204001
|
[18] |
Bauer D and Mulser P 1999 Phys. Rev. A 59 569
|
[19] |
Popruzhenko S V, Mur V D, Popov V S and Bauer D 2008 Phys. Rev. Lett. 101 193003
|
[20] |
Ammosov M V, Delone N B and Krainov V P 1986 Zh. Eksp. Teor. Fiz. 91 2008
|
[21] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
|
[22] |
Fu Y Z, Zhao S F and Zhou X X 2012 Chin. Phys. B 21 113101
|
[23] |
Zhao S F, Le A T, Jin C, Wang X and Lin C D 2016 Phys. Rev. A 93 023413
|
[24] |
Dörr M, Potvliege R M and Shakeshaft R 1990 Phys. Rev. Lett. 64 2003
|
[25] |
Shakeshaft R, Potvliege R M, Dörr M and Cooke W E 1990 Phys. Rev. A 42 1656
|
[26] |
Krainov V P, Xiong W and Chin S L 1992 Laser Phys. 2 467
|
[27] |
Tong X M and Lin C D 2005 J. Phys. B:At. Mol. Opt. Phys. 38 2593
|
[28] |
Krainov V P and Shokri B 1995 Zh. Eksp. Teor. Fiz. 107 1180
|
[29] |
Krainov V P and Shokri B 1995 Sov. Phys.-JETP 80 657
|
[30] |
Krainov V P 1997 J. Opt. Soc. Am. B 14 425
|
[31] |
Tong X M and Chu S I 1997 Chem. Phys. 217 119
|
[32] |
Bauer D and Koval P 2006 Comput. Phys. Commun. 174 396
|
[33] |
Gordon W 1926 Z. Phys. 40 117
|
[34] |
Volkov D M 1935 Z. Phys. 94 250
|
[35] |
Bauer J H 2017 J. Phys. B:At. Mol. Opt. Phys. 50 085601
|
[36] |
Bauer J 2006 Phys. Rev. A 73 023421
|
[37] |
Bauer J H 2007 Phys. Rev. A 75 045401
|
[38] |
Becker A, Plaja L, Moreno P, Nurhuda M and Faisal F H M 2001 Phys. Rev. A 64 023408
|
[39] |
Reiss H R 2002 Phys. Rev. A 65 055405
|
[40] |
Brunetti E, Becker W, Bryant H C, Jaroszynski D A and Chou W 2015 New J. Phys. 17 053008
|
[41] |
Bauer J H 2010 Phys. Rev. A 81 013414
|
[42] |
Bauer J H 2016 J. Phys. B:At. Mol. Opt. Phys. 49 145601
|
[43] |
Klaiber M and Briggs J S 2016 Phys. Rev. A 94 053405
|
[44] |
Volkova E A, Gridchin V V, Popov A M and Tikhonova O V 2006 JETP 102 40
|
[45] |
Bauer J H 2008 J. Phys. B:At. Mol. Opt. Phys. 41 185003
|
[46] |
Burlon R, Leone C, Trombetta F and Ferrante G 1987 Nuovo Cimento D 9 1033
|
[47] |
Leone C, Bivona S, Burlon R, Morales F and Ferrante G 1989 Phys. Rev. A 40 1828
|
[48] |
Bauer D, Milošević D B and Becker W 2005 Phys. Rev. A 72 023415
|
[49] |
Vanne Yu V and Saenz A 2007 Phys. Rev. A 75 033403
|
[50] |
Bauer J H 2011 Phys. Rev. A 83 035402
|
[51] |
Bauer J H 2011 Phys. Rev. A 84 025403
|
[52] |
Ivanov M and Smirnova O 2012 Ionization Strong Low-Frequency Fields:From Quantum S-Matrix Class. Pictures, June 11-15, 2012, Corinf School, Dresden, Germany
|
[53] |
Li J, Huo Y N, Tang Z H and Ma F C 2017 Chin. Phys. B 26 023203
|
[54] |
Scrinzi A, Geissler M and Brabec T 1999 Phys. Rev. Lett. 83 706
|
[55] |
Scrinzi A 2000 Phys. Rev. A 61 041402(R)
|
[56] |
Scrinzi A, private communication
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|