Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 093202    DOI: 10.1088/1674-1056/27/9/093202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Numerical tests of theoretical models describing ionization of H(1s) atom by linearly polarized flat pulse of laser radiation

Jarosław H Bauer1, Min Deng(邓敏)2
1 Katedra Fizyki Teoretycznej, Wydzia? Fizyki i Informatyki Stosowanej Uniwersytetu ?ódzkiego, Ul. Pomorska 149/153, PL-90-236 ?ód?, Poland;
2 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

We derive the well-known Coulomb correction factor for the Gordon-Volkov wave function describing an outgoing electron in the process of ionization in an intense laser field. Although rigorous treatment would limit its use only to laser fields much lower than the so-called barrier-suppression field, it appears that in practice the correction factor may be used also close to and even above this critical value of the laser field. We compare predictions of several analytical expressions describing ionization rate of the hydrogen atom in its ground state in the strong linearly polarized laser field. We also compare ionization probabilities obtained by integrating these ionization rates over a temporal envelope of the laser pulse with predictions based on the exact numerical solution to the time-dependent Schrödinger equation.

Keywords:  laser fields      ionization      S-matrix      Coulomb-Volkov wave function  
Received:  27 April 2018      Revised:  02 July 2018      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
Fund: 

Project supported by the University of ?ód?.

Corresponding Authors:  Jarosław H Bauer, Min Deng     E-mail:  bauer@uni.lodz.pl;dengm13@mails.tsinghua.edu.cn

Cite this article: 

Jaros?aw H Bauer, Min Deng(邓敏) Numerical tests of theoretical models describing ionization of H(1s) atom by linearly polarized flat pulse of laser radiation 2018 Chin. Phys. B 27 093202

[1] Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1945
[2] Keldysh L V 1965 Sov. Phys.-JETP 20 1307
[3] Perelomov A M, Popov V S and Terent'ev M V 1966 Zh. Eksp. Teor. Fiz. 50 1393
[4] Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys.-JETP 23 924
[5] Perelomov A M, Popov V S and Terent'ev M V 1966 Zh. Eksp. Teor. Fiz. 51 309
[6] Perelomov A M, Popov V S and Terent'ev M V 1967 Sov. Phys.-JETP 24 207
[7] Perelomov A M and Popov V S 1967 Zh. Eksp. Teor. Fiz. 52 514
[8] Perelomov A M and Popov V S 1967 Sov. Phys.-JETP 25 336
[9] Faisal F H M 1973 J. Phys. B:At. Mol. Phys. 6 L89
[10] Reiss H R 1980 Phys. Rev. A 22 1786
[11] Reiss H R 1992 Prog. Quantum Electron. 16 1
[12] Gribakin G F and Yu M 1997 Phys. Rev. A 55 3760
[13] Popov V S 2004 Usp. Fiz. Nauk 174 921
[14] Popov V S 2004 Phys. Usp. 47 855
[15] Becker A and Faisal F H M 2005 J. Phys. B:At. Mol. Opt. Phys. 38 R1
[16] Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B:At. Mol. Opt. Phys. 39 R203
[17] Popruzhenko S V 2014 J. Phys. B:At. Mol. Opt. Phys. 47 204001
[18] Bauer D and Mulser P 1999 Phys. Rev. A 59 569
[19] Popruzhenko S V, Mur V D, Popov V S and Bauer D 2008 Phys. Rev. Lett. 101 193003
[20] Ammosov M V, Delone N B and Krainov V P 1986 Zh. Eksp. Teor. Fiz. 91 2008
[21] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
[22] Fu Y Z, Zhao S F and Zhou X X 2012 Chin. Phys. B 21 113101
[23] Zhao S F, Le A T, Jin C, Wang X and Lin C D 2016 Phys. Rev. A 93 023413
[24] Dörr M, Potvliege R M and Shakeshaft R 1990 Phys. Rev. Lett. 64 2003
[25] Shakeshaft R, Potvliege R M, Dörr M and Cooke W E 1990 Phys. Rev. A 42 1656
[26] Krainov V P, Xiong W and Chin S L 1992 Laser Phys. 2 467
[27] Tong X M and Lin C D 2005 J. Phys. B:At. Mol. Opt. Phys. 38 2593
[28] Krainov V P and Shokri B 1995 Zh. Eksp. Teor. Fiz. 107 1180
[29] Krainov V P and Shokri B 1995 Sov. Phys.-JETP 80 657
[30] Krainov V P 1997 J. Opt. Soc. Am. B 14 425
[31] Tong X M and Chu S I 1997 Chem. Phys. 217 119
[32] Bauer D and Koval P 2006 Comput. Phys. Commun. 174 396
[33] Gordon W 1926 Z. Phys. 40 117
[34] Volkov D M 1935 Z. Phys. 94 250
[35] Bauer J H 2017 J. Phys. B:At. Mol. Opt. Phys. 50 085601
[36] Bauer J 2006 Phys. Rev. A 73 023421
[37] Bauer J H 2007 Phys. Rev. A 75 045401
[38] Becker A, Plaja L, Moreno P, Nurhuda M and Faisal F H M 2001 Phys. Rev. A 64 023408
[39] Reiss H R 2002 Phys. Rev. A 65 055405
[40] Brunetti E, Becker W, Bryant H C, Jaroszynski D A and Chou W 2015 New J. Phys. 17 053008
[41] Bauer J H 2010 Phys. Rev. A 81 013414
[42] Bauer J H 2016 J. Phys. B:At. Mol. Opt. Phys. 49 145601
[43] Klaiber M and Briggs J S 2016 Phys. Rev. A 94 053405
[44] Volkova E A, Gridchin V V, Popov A M and Tikhonova O V 2006 JETP 102 40
[45] Bauer J H 2008 J. Phys. B:At. Mol. Opt. Phys. 41 185003
[46] Burlon R, Leone C, Trombetta F and Ferrante G 1987 Nuovo Cimento D 9 1033
[47] Leone C, Bivona S, Burlon R, Morales F and Ferrante G 1989 Phys. Rev. A 40 1828
[48] Bauer D, Milošević D B and Becker W 2005 Phys. Rev. A 72 023415
[49] Vanne Yu V and Saenz A 2007 Phys. Rev. A 75 033403
[50] Bauer J H 2011 Phys. Rev. A 83 035402
[51] Bauer J H 2011 Phys. Rev. A 84 025403
[52] Ivanov M and Smirnova O 2012 Ionization Strong Low-Frequency Fields:From Quantum S-Matrix Class. Pictures, June 11-15, 2012, Corinf School, Dresden, Germany
[53] Li J, Huo Y N, Tang Z H and Ma F C 2017 Chin. Phys. B 26 023203
[54] Scrinzi A, Geissler M and Brabec T 1999 Phys. Rev. Lett. 83 706
[55] Scrinzi A 2000 Phys. Rev. A 61 041402(R)
[56] Scrinzi A, private communication
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[3] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[4] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[5] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[6] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[7] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[8] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[9] Ultrafast dynamics of cationic electronic states of vinyl bromide by strong-field ionization-photofragmentation
Long-Xing Zhou(周龙兴), Yang Liu(刘洋), Shen He(贺屾), Da-Shuai Gao(高大帅), Xing-Chen Shen(沈星晨), Qi Chen(陈淇), Tao Yu(于涛), Hang Lv(吕航), and Hai-Feng Xu(徐海峰). Chin. Phys. B, 2022, 31(2): 028202.
[10] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[11] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[12] Influence of Coulomb force between two electrons on double ionization of He-like atoms
Peipei Liu(刘培培), Yongfang Li(李永芳), and Jingtao Zhang(张敬涛). Chin. Phys. B, 2022, 31(1): 013202.
[13] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[14] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[15] X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2021, 30(8): 083201.
No Suggested Reading articles found!