|
|
Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine |
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲) |
School of Information Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract We propose a method to improve the secret key rate of an eight-state continuous-variable quantum key distribution (CVQKD) by using a linear optics cloning machine (LOCM). In the proposed scheme, an LOCM is exploited to compensate for the imperfections of Bob's apparatus, so that the generated secret key rate of the eight-state protocol could be well enhanced. We investigate the security of our proposed protocol in a finite-size scenario so as to further approach the practical value of a secret key rate. Numeric simulation shows that the LOCM with reasonable tuning gain λ and transmittance τ can effectively improve the secret key rate of eight-state CVQKD in both an asymptotic limit and a finite-size regime. Furthermore, we obtain the tightest bound of the secure distance by taking the finite-size effect into account, which is more practical than that obtained in the asymptotic limit.
|
Received: 27 January 2018
Revised: 17 May 2018
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153 and 61572529). |
Corresponding Authors:
Ling Zhang
E-mail: lingzhang2017@foxmail.com
|
Cite this article:
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲) Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine 2018 Chin. Phys. B 27 090307
|
[1] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
[2] |
Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
|
[3] |
Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
|
[4] |
Samuel L B and Peter V L 2005 Rev. Mod. Phys. 77 513
|
[5] |
Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
|
[6] |
Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 20 4162
|
[7] |
Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
|
[8] |
Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
|
[9] |
Wang X Y, Zhang Y C, Li Z Y, Xu B J, Yu S and Guo H 2017 Quantum Inf. Comput. 17 1123
|
[10] |
Milicevic M, Feng C, Zhang L M and Gulak P G 2018 Quantum Inf. 4 21
|
[11] |
Diamanti E and Leverrier A 2015 Entropy 17 6072
|
[12] |
Liao Q, Guo Y, Huang D, Huang P and Zeng G H 2018 New J. Phys. 20 023015
|
[13] |
Xuan Q D, Zhang Z S and Voss P L 2009 Opt. Express 17 24244
|
[14] |
Wang X Y, Bai Z L, Wang S F, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 010305
|
[15] |
Becir A, El-Orany F A A and Wahiddin M R B 2012 Int. J. Quantum Inform. 10 1250004
|
[16] |
Qu Z and Djordjevic I B 2017 IEEE Photon. J. 9 7600408
|
[17] |
Andersen U L, Josse V and Leuchs G 2005 Phys. Rev. Lett. 94 240503
|
[18] |
Guo Y, Lv G L and Zeng G H 2015 Quantum Inf. Process 14 4323
|
[19] |
Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
|
[20] |
Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 6429
|
[21] |
Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photonics 9 397
|
[22] |
Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
|
[23] |
Zhou C, Bao W S, Li H W, Wang Y, Li Y, Yin Z Q, Chen W and Han Z F 2013 Phys. Rev. A 89 052328
|
[24] |
Leverrier A 2015 Phys. Rev. Lett. 114 070501
|
[25] |
Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312
|
[26] |
Hu L Y, Liao Z Y and Zubairy M S 2017 Phys. Rev. A 95 012310
|
[27] |
Yang J, Xu B, Peng X and Guo H 2012 Phys. Rev. A 85 052302
|
[28] |
Guo Y, Liao Q, Wang Y J, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304
|
[29] |
Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
|
[30] |
Lodewyck J and Grangier P 2007 Phys. Rev. A 76 022332
|
[31] |
Thearle O, Assad S M and Symul T 2016 Phys. Rev. A 93 042343
|
[32] |
Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
|
[33] |
Guo Y, Qiu D L, Huang P and Zeng G H 2015 J. Phys. Soc. Jpn. 84 094003
|
[34] |
Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317
|
[35] |
Wu X D, Liao Q, Huang D, Wu X H and Guo Y 2017 Chin. Phys. B 26 110304
|
[36] |
Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
|
[37] |
Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 52309
|
[38] |
Wang P, Wang X, Li J and Li Y 2017 Opt. Express 25 27995
|
[39] |
Zhang H, Fang J and He G Q 2012 Phys. Rev. A 86 022338
|
[40] |
Usenko V C and Filip R 2016 Entropy 18
|
[41] |
Yang Y, Xu L P, Yan B, Zhang H Y and Shen Y H 2017 Chin. Phys. B 26 110305
|
[42] |
Guo Y, Li R J, Liao Q, Zhou J and Huang D 2018 Phys. Lett. A 382 372
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|