|
|
Thermodynamic properties of a finite Bose gas in a harmonic trap |
Wang Jian-Hui(王建辉) and Ma Yong-Li(马永利)† |
Department of Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract We have investigated the thermodynamic behaviour of ideal Bose gases with an arbitrary number of particles confined in a harmonic potential. By taking into account the conservation of total number N of particles and using a saddle-point approximation, we derive analytically the simple explicit expression of mean occupation number in any state of the finite system. The temperature dependence of the chemical potential, specific heat, and condensate fraction for the trapped finite-size Bose system is obtained numerically. We compare our results with the usual treatment which is based on the grand canonical ensemble. It is shown that there exists a considerable difference between them at sufficiently low temperatures, specially for the relative small numbers of Bose atoms. The finite-size scaling at the transition temperature for the harmonically trapped systems is also discussed. We find that the scaled condensate fractions for various system sizes and temperatures collapse onto a single scaled form.
|
Received: 18 September 2009
Revised: 30 September 2009
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
05.30.Ch
|
(Quantum ensemble theory)
|
|
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10775032 and 10574028). |
Cite this article:
Wang Jian-Hui(王建辉) and Ma Yong-Li(马永利) Thermodynamic properties of a finite Bose gas in a harmonic trap 2010 Chin. Phys. B 19 050502
|
[1] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[2] |
Petrich W, Anderson M H, Ensher J R and Cornell E A 1995 Phys. Rev. Lett. 74 3352
|
[3] |
Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
|
[4] |
Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 416
|
[5] |
Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811
|
[6] |
See, for example, Huang K 1987 Statistical Mechanics (New York: Taylor and Francis Inc.)
|
[7] |
Ziff R M, Uhlenbeck G E and Kac M 1977 Phys. Rep. 32 169
|
[8] |
Grossmann S and Holthaus M 1995 Z. Naturforsch. 50a 921
|
[9] |
Grossmann S and Holthaus M 1995 Phys. Lett. A 208 188
|
[10] |
Ketterle W and van Druten N J 1996 Phys. Rev. A 54 656
|
[11] |
Kirsten K and Toms D J 1996 Phys. Rev. A 54 4188
|
[12] |
Napolitano R, Luca J D and Bagnato V S 1997 Phys. Rev. A 55 3954
|
[13] |
Pathria R K 1998 Phys. Rev. A 58 1490
|
[14] |
Holthaus M and Kalinowski E 1998 Ann. Phys. 270 198
|
[15] |
Ligare M 1998 Am. J. Phys. 66 185
|
[6] |
Kl\"{Under B and Pelster A 2009 Eur. Phys. J. B 68 457
|
[17] |
Li M, Chen L, Chen J, Yan Z and Chen C 1999 Phys. Rev. A 60 4168
|
[18] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[19] |
Politzer H D 1996 Phys. Rev. A 54 5048
|
[20] |
Grossmann S and Holthaus M 1996 Phys. Rev. E 54 3495
|
[21] |
Grossmann S and Holthaus M 1997 Phys. Rev. Lett. 79 3557
|
[22] |
Wilkens M and Weiss C 1997 J. Mod. Opt. 44 1801
|
[23] |
Weiss C and Wilkens M 1997 Opt. Express 1 272
|
[24] |
Deng W and Hui P M 1997 Solid State Commun. 104 729
|
[25] |
Brosens F, Devreese J T and Lemmens L F 1996 Solid State Commun. 100 123
|
[26] |
Brosens F, Devreese J T and Lemmens L F 1997 Phys. Rev. E 55 227
|
[27] |
Balazs N L and Bergeman T 1998 Phys. Rev. A 58 2359
|
[28] |
Borrman P, Harting J, M\"{Ulken O and Hilf E R 1999 Phys. Rev. A 60 1519
|
[29] |
Chase K C, Mekjian A Z and Zamick L 1999 Eur. Phys. J. B 8 281
|
[30] |
Idziaszek Z, Gajda M, Navez P, Wilkens M and Rzazewski K 1999 Phys. Rev. Lett. 82 4376
|
[31] |
Xiong H, Liu S, Huang G and Xu Z 2002 Phys. Rev. A 65 033609
|
[32] |
Mullin W J and Fernandez J P 2003 Am. J. Phys. 71 661
|
[33] |
Borrmann P, Mulken O and Harting S 2000 Phys. Rev. Lett. 84 3511
|
[34] |
Wen L H, Liu M, Kong L B, Chen A X and Zhan M S 2005 Chin. Phys. 14 690
|
[35] |
Idziaszek Z 2005 Phys. Rev. A 71 053604
|
[36] |
Glaum K, Kleinert H and Pelster A 2007 Phys. Rev. A 76 063604
|
[37] |
Idziaszek Z, Zawitkowski L, Gajda M and Rzazewski K 2009 Eur. Phys. Lett. 86 10002
|
[38] |
Scully M O 1999 Phys. Rev. Lett. 82 3927
|
[39] |
Kocharovsky V V, Scully M O, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 023609
|
[40] |
Ma X D, Z Y, Ma Y L and Huang G X 2006 Chin. Phys. 15 1871
|
[41] |
Svidzinsky A A and Scully M O 2006 Phys. Rev. Lett. 97 190402
|
[42] |
Kocharovsky V V, Kocharovsky Vl V, Holthaus M, Ooi C H R, Svidzinsky A, Ketterle W and Scully M O 2006 Adv. At. Mol. Opt. Phys. 53 291
|
[43] |
Mu A X, Zhou X Y and Xue J K 2008 Chin. Phys. B 17 764
|
[44] |
Chen A X , Qiu W Y and Wang Z P 2008 Chin. Phys. B 17 4204
|
[45] |
Wang J H and Ma Y L 2009 Phys. Rev. A 79 033604
|
[46] |
Li H and Wang D N 2009 Chin. Phys. B 18 2659
|
[47] |
Green H S 1953 Phys. Rev. 90 270
|
[48] |
Gentile G 1940 Nuovo. Cim. 17 493
|
[49] |
Katsura S, Kaminishi K and Inawashiro S 1970 J. Math. Phys. 11 2691
|
[50] |
Khare A 1997 Fractional Statistics and Quantum Theory (Singapore: World Scientific)
|
[51] |
Pollock E L and Runge K J 1992 Phys. Rev. B 46 3535
|
[52] |
Gruter P, Ceperley D and Laloe F 1997 Phys. Rev. Lett. 79 3549
|
[53] |
Mueller E J, Baym G and Holzmann M 2001 J. Phys. B : At. Mol. Opt. Phys. 34 4561
|
[54] |
Fujiwara I, ter Haar D and Wergeland H 1970 J. Stat. Phys. 2 329
|
[55] |
Holthaus M and Kalinowski E 1999 Ann. Phys. 276 321
|
[56] |
Donner T, Ritter S, Bourdel T, Ottl A, Kohl M and Esslinger T 2007 Science 315 1556
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|