|
|
Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction |
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌) |
Department of Physics, Hubei University, Wuhan 430062, China |
|
|
Abstract We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya (DM) interaction. The thermal quantum discord (TQD) and the thermal entanglement (TE) are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the “regrowth” phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.
|
Received: 23 April 2018
Revised: 25 June 2018
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001). |
Corresponding Authors:
Zhu Mao, Zhu Mao
E-mail: maozhu@hubu.edu.cn;binzhou@hubu.edu.cn
|
Cite this article:
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌) Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction 2018 Chin. Phys. B 27 090306
|
[1] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[2] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[3] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[4] |
Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys. 8 671
|
[5] |
Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
|
[6] |
Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1804
|
[7] |
Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 91
|
[8] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[9] |
Jozsa R and Linden N 2003 Proc. R. Soc. A 459 2011
|
[10] |
Shor P W 1994 Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Nov 20-22, 1994, Santa Fe, USA, p.~124
|
[11] |
Torrico J, Rojas M, de Souza S M, Rojas O and Ananikian N S 2014 Europhys. Lett. 108 50007
|
[12] |
Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.:Condens. Matter 24 256001
|
[13] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[14] |
Henderson L and Vedral V 2001 J. Phys. A 34 6899
|
[15] |
Luo S 2008 Phys. Rev. A 77 042303
|
[16] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[17] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[18] |
Lu X M, Ma J, Xi Z and W X 2011 Phys. Rev. A 83 012327
|
[19] |
Chen Q, Zhang C, Yu S, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
|
[20] |
Terzis A F, Androvitsaneas P and Paspalakis E 2012 Quant. Inf. Proc. 11 1931
|
[21] |
Motamedifar M 2017 Quant. Inf. Proc. 16 162
|
[22] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[23] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[24] |
Gao K, Xu Y L, Kong X M and Liu Z Q 2015 Physica A 429 10
|
[25] |
Guo J L, Mi Y J, Zhang J and Song H S 2011 J. Phys. B:At. Mol. Opt. Phys. 44 065504
|
[26] |
Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
|
[27] |
Dillenschneider R 2008 Phys. Rev. B 78 224413
|
[28] |
Liu B Q, Shao B, Li J G, Zou J and Wu L A 2011 Phys. Rev. A 83 052112
|
[29] |
Xu L, Yuan J B, Tan Q S, Zhou L and Kuang L M 2011 Eur. Phys. J. D 64 565
|
[30] |
Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
|
[31] |
Werlang T, Ribeiro G A P and Rigolin G 2013 Int. J. Mod. Phys. B 27 1345032
|
[32] |
Tian L J, Yan Y Y and Qin L G 2012 Commun. Theor. Phys. 58 39
|
[33] |
Xiao R H, Guo Z Y and Fang J X 2012 Mod. Phys. Lett. B 26 1150028
|
[34] |
Tan X D, Huang S S and Jin B Q 2013 Commun. Theor. Phys. 59 146
|
[35] |
Gong J M and Hui Z Q 2014 Physica B 444 40
|
[36] |
Li D C and Cao Z L 2008 Eur. Phys. J. D 50 207
|
[37] |
Wang X, Fu H and Solomon A I 2001 J. Phys. A:Math. Gen. 34 11307
|
[38] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
|
[39] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
|
[40] |
Jaščur M and Strečka J 2004 J. Magn. Magn. Mater. 272-276 984
|
[41] |
Čanová L, Strečka J and Jaščur M 2006 J. Phys.:Condens. Matter 18 4967
|
[42] |
Strečka J, Čanová L, Lučivjanský T and Jaščur M 2009 J. Phys.:Conf. Series 145 012058
|
[43] |
Zheng Y D, Mao Z and Zhou B 2017 Chin. Phys. B 26 070302
|
[44] |
Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
|
[45] |
Qiao J and Zhou B 2015 Chin. Phys. B 24 110306
|
[46] |
Faizi E and Eftekhari H 2014 Rep. Math. Phys. 74 251
|
[47] |
Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241
|
[48] |
Moriya T 1960 Phys. Rev. 120 91
|
[49] |
Chen Y X and Yin Z 2010 Commun. Theor. Phys. 54 60
|
[50] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
|
[51] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Kindo K, Matsuo A, Higemoto W, Nishiyama K, Horvatić M and Bertheir C 2005 Prog. Theore. Phys. Suppl. 159 1
|
[52] |
Rule K C, Reehuis M, Gibson M C R, Ouladdiaf B, Gutmann M J, Hoffmann J U, Gerischer S, Tennant D A, Süllow S and Lang M 2011 Phys. Rev. B 83 104401
|
[53] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[54] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78, 5022
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|