Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090306    DOI: 10.1088/1674-1056/27/9/090306
GENERAL Prev   Next  

Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction

Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌)
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  

We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya (DM) interaction. The thermal quantum discord (TQD) and the thermal entanglement (TE) are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the “regrowth” phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.

Keywords:  thermal quantum discord      thermal entanglement      Ising-Heisenberg diamond chain  
Received:  23 April 2018      Revised:  25 June 2018      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Pq (Spin chain models)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).

Corresponding Authors:  Zhu Mao, Zhu Mao     E-mail:  maozhu@hubu.edu.cn;binzhou@hubu.edu.cn

Cite this article: 

Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌) Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction 2018 Chin. Phys. B 27 090306

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[4] Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys. 8 671
[5] Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
[6] Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1804
[7] Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 91
[8] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[9] Jozsa R and Linden N 2003 Proc. R. Soc. A 459 2011
[10] Shor P W 1994 Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Nov 20-22, 1994, Santa Fe, USA, p.~124
[11] Torrico J, Rojas M, de Souza S M, Rojas O and Ananikian N S 2014 Europhys. Lett. 108 50007
[12] Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.:Condens. Matter 24 256001
[13] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[14] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[15] Luo S 2008 Phys. Rev. A 77 042303
[16] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[17] Sarandy M S 2009 Phys. Rev. A 80 022108
[18] Lu X M, Ma J, Xi Z and W X 2011 Phys. Rev. A 83 012327
[19] Chen Q, Zhang C, Yu S, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[20] Terzis A F, Androvitsaneas P and Paspalakis E 2012 Quant. Inf. Proc. 11 1931
[21] Motamedifar M 2017 Quant. Inf. Proc. 16 162
[22] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[23] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[24] Gao K, Xu Y L, Kong X M and Liu Z Q 2015 Physica A 429 10
[25] Guo J L, Mi Y J, Zhang J and Song H S 2011 J. Phys. B:At. Mol. Opt. Phys. 44 065504
[26] Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[27] Dillenschneider R 2008 Phys. Rev. B 78 224413
[28] Liu B Q, Shao B, Li J G, Zou J and Wu L A 2011 Phys. Rev. A 83 052112
[29] Xu L, Yuan J B, Tan Q S, Zhou L and Kuang L M 2011 Eur. Phys. J. D 64 565
[30] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[31] Werlang T, Ribeiro G A P and Rigolin G 2013 Int. J. Mod. Phys. B 27 1345032
[32] Tian L J, Yan Y Y and Qin L G 2012 Commun. Theor. Phys. 58 39
[33] Xiao R H, Guo Z Y and Fang J X 2012 Mod. Phys. Lett. B 26 1150028
[34] Tan X D, Huang S S and Jin B Q 2013 Commun. Theor. Phys. 59 146
[35] Gong J M and Hui Z Q 2014 Physica B 444 40
[36] Li D C and Cao Z L 2008 Eur. Phys. J. D 50 207
[37] Wang X, Fu H and Solomon A I 2001 J. Phys. A:Math. Gen. 34 11307
[38] Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
[39] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
[40] Jaščur M and Strečka J 2004 J. Magn. Magn. Mater. 272-276 984
[41] Čanová L, Strečka J and Jaščur M 2006 J. Phys.:Condens. Matter 18 4967
[42] Strečka J, Čanová L, Lučivjanský T and Jaščur M 2009 J. Phys.:Conf. Series 145 012058
[43] Zheng Y D, Mao Z and Zhou B 2017 Chin. Phys. B 26 070302
[44] Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
[45] Qiao J and Zhou B 2015 Chin. Phys. B 24 110306
[46] Faizi E and Eftekhari H 2014 Rep. Math. Phys. 74 251
[47] Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241
[48] Moriya T 1960 Phys. Rev. 120 91
[49] Chen Y X and Yin Z 2010 Commun. Theor. Phys. 54 60
[50] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
[51] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Kindo K, Matsuo A, Higemoto W, Nishiyama K, Horvatić M and Bertheir C 2005 Prog. Theore. Phys. Suppl. 159 1
[52] Rule K C, Reehuis M, Gibson M C R, Ouladdiaf B, Gutmann M J, Hoffmann J U, Gerischer S, Tennant D A, Süllow S and Lang M 2011 Phys. Rev. B 83 104401
[53] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[54] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78, 5022
[1] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[2] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[3] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
[4] A thermal entangled quantum refrigerator based on a two-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field
Wang Hao (汪浩), Wu Guo-Xing (吴国兴). Chin. Phys. B, 2013, 22(5): 050512.
[5] Entangled quantum heat engine based on two-qubit Heisenberg XY model
He Ji-Zhou(何济洲), He Xian(何弦), and Zheng Jie(郑洁) . Chin. Phys. B, 2012, 21(5): 050303.
[6] Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya interaction and the inhomogeneous magnetic field
Gao Dan(高丹), Zhao Zhen-Shuang(赵振双), Zhu Ai-Dong(朱爱东), Wang Hong-Fu(王洪福), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿). Chin. Phys. B, 2010, 19(9): 090313.
[7] Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field
Erhan Albayrak. Chin. Phys. B, 2010, 19(9): 090319.
[8] Quantum phase transition and entanglement in Heisenberg XX spin chain with impurity
Chen Shi-Rong(陈士荣), Xia Yun-Jie(夏云杰), and Man Zhong-Xiao(满忠晓). Chin. Phys. B, 2010, 19(5): 050304.
[9] Thermal entanglement in molecular spin rings
Hou Jing-Min(侯净敏), Du Long(杜龙), Ding Jia-Yan(丁伽焱), and Zhang Wen-Xin(张文新). Chin. Phys. B, 2010, 19(11): 110313.
[10] Pairwise thermal entanglement in a three-qubit Heisenberg XX model with a nonuniform magnetic field and Dzyaloshinski–Moriya interaction
Ren Jin-Zhong(任金忠), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(10): 100307.
[11] Tunable thermal entanglement in an effective spin-star system using coupled microcavities
Yang Wan-Li(杨万里), Wei Hua(魏华), Feng Mang(冯芒), and An Jun-Hong(安钧鸿). Chin. Phys. B, 2009, 18(9): 3677-3686.
[12] Thermal entanglement in a two-qubit Heisenberg XY chain with the Dzyaloshinskii--Moriya interaction
Qin Meng(秦猛), Xu Sheng-Long(徐胜龙), Tao Ying-Juan(陶应娟), and Tian Dong-Ping(田东平). Chin. Phys. B, 2008, 17(8): 2800-2803.
[13] Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state
Huang Li-Yuan(黄利元) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2008, 17(7): 2339-2345.
[14] Entanglement in a generalized Jaynes--Cummings model
Zhang Guo-Feng(张国锋) and Liu Jia(刘佳). Chin. Phys. B, 2007, 16(12): 3595-3600.
[15] Thermal entanglement in 1D optical lattice chains with nonlinear coupling
Zhou Ling (周玲), Yi Xue-Xi (衣学喜), Song He-Shan (宋鹤山), Guo Yan-Qing (郭彦青). Chin. Phys. B, 2005, 14(6): 1168-1173.
No Suggested Reading articles found!