|
|
Spherical reconciliation for a continuous-variable quantum key distribution |
Zhao Lu(卢钊)1, Jian-Hong Shi(史建红)1,2, Feng-Guang Li(李风光)1 |
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China; 2 Science and Technology on Information Assurance Laboratory, Beijing 100072, China |
|
|
Abstract Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD.
|
Received: 06 August 2016
Revised: 10 November 2016
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
84.40.Ua
|
(Telecommunications: signal transmission and processing; communication satellites)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1304613 and 11204379). |
Corresponding Authors:
Jian-Hong Shi
E-mail: shijianhong2011@163.com
|
Cite this article:
Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光) Spherical reconciliation for a continuous-variable quantum key distribution 2017 Chin. Phys. B 26 040304
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, December 10-12, 1984, New York, USA, p. 175
|
[2] |
Ralph T C 1999 Phys. Rev. A 61 103031
|
[3] |
Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
|
[4] |
Gu Y B, Bao W S, Wang Y and Zhou C 2016 Chin. Phys. Lett. 33 040301
|
[5] |
Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 030302 (in Chinese)
|
[6] |
Yin Z Q, An X B and Han Z F 2015 Acta Phys. Sin. 64 140303 (in Chinese)
|
[7] |
Chen H, An X B, Wu J, Yin Z Q, Wang S, Chen W and Han Z F 2016 Chin. Phys. B 25 020305
|
[8] |
Li Y, Bao W S, Li H W, Zhou C and Wang Y 2016 Chin. Phys. B 25 010305
|
[9] |
Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
|
[10] |
Li Y, Bao W S, Li H W, Zhou C and Wang Y 2015 Chin. Phys. B 24 110307
|
[11] |
Jouguet P, Elkouss D and Kunz-jacques S 2014 Phys. Rev. A 90 042329
|
[12] |
Xia Z H, Wang X H, Sun X M and Wang Q 2015 IEEE Transactions on Parallel and Distributed Systems 27 340
|
[13] |
Fu Z J, Sun X M, Liu Q, Zhou L and Shu J G 2015 IEICE Transactions on Communications 98 190
|
[14] |
Fu Z J, Wu X L, Guan C W, Sun X M and Ren K 2016 IEEE Transactions on Information Forensics and Security 11 2706
|
[15] |
Elkouss D, Martinez-Mateo J and Martin V 2011 Quantum Inform. Comput. 11 226
|
[16] |
Du P Y, Bai Z L, Wang X Y and Li Y M 2013 Acta Sin. Quantum Opt. 19 129
|
[17] |
Li Y, Liao S K, Liang F T, Shen Q, Liang H and Peng C Z 2016 Chin. Phys. Lett. 33 30303
|
[18] |
Buttler W T, Torgerson J R and Lamoreaux S K 2002 Phys. Lett. A 299 38
|
[19] |
Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
|
[20] |
Grosshans F, Van A G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
|
[21] |
Van Assche G, Cardinal J and Cerf N J 2004 IEEE Transactions on Information Theory 50 394
|
[22] |
Bai Z L, Wang X Y, Yang S S and Li Y M 2016 Sci. China-Phys., Mech. & Astron. 59 614201
|
[23] |
Leverrier A, Alléaume R, Boutros J, Zémor G and Grangier P 2008 Phys. Rev. A 77 042325
|
[24] |
Grosshans F and Grangier P 2002 Physics 3 4
|
[25] |
Davey M C, Mackay D 1998 IEEE Commun. Lett. 2 70
|
[26] |
Ankan E, Ul Hassan N, Lentmaier M and Montorsi G 2015 Journal of Communications and Networks 17 328
|
[27] |
Voicila A, Declercq D, Verdier F Fossorier M and Urard P 2010 IEEE Trans. Commun. 58 1365
|
[28] |
Sayir J 2014 Non-binary "LDPC decoding using truncated messages in the Walsh-Hadamard domain". International Symposium on Information Theory and ITS Applications, IEEE, p. 16-20
|
[29] |
Pacher C, Martinez-Mateo J, Duhme J, Gehring T and Furrer F 2016 arXiv: 1602.09140v1 [quant-ph]
|
[30] |
Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov, E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin W and Grangier P 2007 Phys. Rev. A 76 042305
|
[31] |
Jouguet P, Kunz-Jacques S, and Leverrier A 2011 Phys. Rev. A 84 062317
|
[32] |
Wang C, Huang D, Huang P, Lin D K, Peng J Y and Zeng G H 2015 Sci. Rep. 5 14607
|
[33] |
Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
|
[34] |
Silberhorn C, Ralph T C, Lütkenhaus N and Leuche G 2002 Phys. Rev. Lett. 89 167901
|
[35] |
Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|