Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 056102    DOI: 10.1088/1674-1056/23/5/056102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals

Yang Lian-Zhi (杨连枝)a b, Ricoeur Andreasc, He Fan-Min (何蕃民)d, Gao Yang (高阳)a
a College of Science, China Agricultural University, Beijing 100083, China;
b College of Engineering, China Agricultural University, Beijing 100083, China;
c Institute of Mechanics, University of Kassel, Kassel 34125, Germany;
d Sichuan Hydropower Investment & Management Group LTD, Chengdu 611130, China
Abstract  Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement field, there is a phason displacement field in the elasticity of the quasicrystal, which induces an important effect on the mechanical properties of the material and makes an analytical solution difficult to obtain. In this paper, a finite element algorithm for the static elasticity of icosahedral quasicrystals is developed by transforming the elastic boundary value problem of the icosahedral quasicrystals into an equivalent variational problem. Analytical and numerical solutions for an icosahedral Al-Pd-Mn quasicrystal cuboid subjected to a uniaxial tension with different phonon-phason coupling parameters are given to verify the validity of the numerical approach. A comparison between the analytical and numerical solutions of the specimen demonstrates the accuracy and efficiency of the present algorithm. Finally, in order to reveal the fracture behavior of the icosahedral Al-Pd-Mn quasicrystal, a cracked specimen with a finite size of matter is investigated, both with and without phonon-phason coupling. Meanwhile, the geometry factors are calculated, including the stress intensity factor and the crack opening displacement for the finite-size specimen. Computational results reveal the importance of phonon-phason coupling effect on the icosahedral Al-Pd-Mn quasicrystal. Furthermore, the finite element procedure can be used to solve more complicated boundary value problems.
Keywords:  icosahedral quasicrystals      finite-size crack specimen      finite element method      cuboid  
Received:  07 November 2013      Revised:  17 December 2013      Accepted manuscript online: 
PACS:  61.44.Br (Quasicrystals)  
  62.20.D- (Elasticity)  
  62.20.M- (Structural failure of materials)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11172319), the Scientific Fund of Chinese Universities (Grant Nos. 2011JS046 and 2013BH008), the Opening Fund of State Key Laboratory of Nonlinear Mechanics, Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0552), and the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2013M541086).
Corresponding Authors:  Gao Yang     E-mail:  gaoyangg@gmail.com
About author:  61.44.Br; 62.20.D-; 62.20.M-; 07.05.Tp

Cite this article: 

Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳) Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals 2014 Chin. Phys. B 23 056102

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Levine D and Stcinhardt P J 1984 Phys. Rev. Lett. 53 2477
[3] Ronchetti A M and Tasker P W 1987 Phil. Mag. 56 237
[4] Ovid'ko I A 1992 Mat. Sci. Eng.: A 154 29
[5] Wollgarten M, Beyss M, Urban K, Liebertz H and Köster U 1993 Phys. Rev. Lett. 71 549
[6] Ma J Y, Wang J B and Wang R H 2008 J. Phys. D: Appl. Phys. 41 085413
[7] Bak P 1985 Phys. Rev. Lett. 54 1517
[8] Bak P 1985 Phys. Rev. B 32 5764
[9] Levine D, Lubensky T C, Qstlund S, Ramaswamy S and Steinhardt P J 1985 Phys. Rev. Lett. 54 1520
[10] Fan T Y 2011 Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Heidelberg: Springer)
[11] Ding D H, Yang W G, Hu C Z and Wang R H 1993 Phys. Rev. B 48 7003
[12] Letoublon A, de Boissien M, Boudard M, Mancini L, Gastaldi J, Hennion B, Caudron R and Bellissent R 2001 Phil. Mag. Lett. 81 273
[13] Capitan M J, Calvayrac Y, Quivy A, Joulaud J L, LeFebvre S and Gratias D 1999 Phys. Rev. B 60 6398
[14] Tanaka K, Mitarai Y and Koiwa M 1996 Phil. Mag. A 76 1715
[15] Edagawa K and So GY 2007 Phil. Mag. 87 77
[16] Bachteler J and Trebin H R 1998 Eur. Phys. J. B 4 299
[17] Gao Y and Ricoeur A 2010 Phys. Lett. A 374 4354
[18] Zhu A Y and Fan T Y 2007 Chin. Phys. 16 1111
[19] Gao Y, Ricoeur A and Zhang L L 2011 Phys. Lett. A 375 2775
[20] Chen W Q, Ma L and Ding H J 2004 Mech. Res. Commun. 31 633
[21] Fan T Y and Peng Y Z 2000 Chin. Phys. B 9 764
[22] Li L H and Fan T Y 2008 Sci. China Ser. G 51 773
[23] Li L H and Fan T Y 2007 Phys. Lett. A 372 510
[24] Schaaf G D, Roth J, Trebin H R and Mikulla R 2000 Phil. Mag. A 80 1657
[25] Wang X F, Fan T Y and Zhu A Y 2009 Chin. Phys. B 18 709
[26] Sladek J, Sladek V and Pan E 2013 Int. J. Solids Struct. 50 3975
[27] Sladek J, Sladek V, Krahulec S, Zhang Ch and Wünsche M 2013 Int. J. Fract. 181 115
[28] Radi E and Mariano P M 2011 Math. Meth. Appl. Sci. 34 1
[29] Hu C Z, Wang R H and Ding D H 2000 Rep. Prog. Phys. 63 1
[30] Henshell R D and Shaw K G 1975 Int. J. Num. Meth. Eng. 9 495
[31] Barsoum R S 1975 Int. J. Num. Meth. Eng. 10 25
[32] Ricoeur A and Kuna M 2003 J. Eur. Ceram. Soc. 23 1313
[33] Tada H, Paris P C and Irwin G R 1985 The Stress Analysis of Cracks (Del Research Corporation)
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[7] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[8] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[9] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[10] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[11] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[12] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[13] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[14] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[15] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
No Suggested Reading articles found!