|
|
Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model |
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚)†, Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭) |
Department of Physics, China University of Mining & Technology, Xuzhou 221116, China |
|
|
Abstract In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma—Tamborenea growth model, the (1+1)-dimensional Das Sarma—Tamborenea model is simulated on a large length scale by using the kinetic Monte—Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma—Tamborenea model systematically decreases with system size L increasing when L > 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma—Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.
|
Accepted manuscript online:
|
PACS:
|
68.35.Ct
|
(Interface structure and roughness)
|
|
68.35.B-
|
(Structure of clean surfaces (and surface reconstruction))
|
|
68.35.Fx
|
(Diffusion; interface formation)
|
|
02.50.Ng
|
(Distribution theory and Monte Carlo studies)
|
|
Fund: Projects supported by the National Natural Science Foundation of China (Grant No. 10674177) and the Youth Foundation of China University of Mining & Technology (Grant No. 2008A035). |
Cite this article:
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚), Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭) Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model 2010 Chin. Phys. B 19 070516
|
[1] |
Family F and Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)
|
[2] |
Barab'asi A L and Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)
|
[3] |
Halpin-Healy T and Zhang Y C 1995 Phys. Rep. 254 215
|
[4] |
Meakin P 1998 Fractals, Scaling and Growth Far from Equilibrium (Cambridge: Cambridge University Press)
|
[5] |
Tang G and Ma B K 2002 Acta Phys. Sin. 51 0994 (in Chinese)
|
[6] |
Hao D P, Tang G, Xia H, Chen H, Zhang L M and Xun Z P 2007 Acta Phys. Sin. 56 2018 (in Chinese)
|
[7] |
Family F and Vicsek T 1985 J. Phys. A 18 L75
|
[8] |
Edwards S F and Wilkinson D R 1982 Proc. R. Soc. Lond. A 381 17
|
[9] |
Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889
|
[10] |
L'opez J M, Rodr'higuez M A and Cuerno R 1997 Phys. Rev. E 56 3993
|
[11] |
Amar J G, Lam P M and Family F 1993 Phys. Rev. E 47 3242
|
[12] |
Jeffries J H, Zuo J K and Craig M M 1996 Phys. Rev. Lett. 76 4931
|
[13] |
Yang H N, Wang G C and Lu T M 1994 Phys. Rev. Lett. 73 2348
|
[14] |
L'opez J M and Schmittbuhl J 1998 Phys. Rev. E 57 6405
|
[15] |
Santamaria J, G'omez M E, Vicent J L, Krishnan K M and Schuller I K 2002 Phys. Rev. Lett. 89 190601
|
[16] |
Huo S and Schwarzacher W 2001 Phys. Rev. Lett. 86 256
|
[17] |
Soriano J, Ramasco J J, Rodr'higuez A, Hern'andez-Machado H and Ort'hin J 2002 Phys. Rev. Lett. 89 026102
|
[18] |
L'opez J M, Rodr'higuez M A and Cuerno R 1997 Physica A 246 329
|
[19] |
Das Sarma S and Tamborenea P 1991 Phys. Rev. Lett. 66 325
|
[20] |
Krug J 1994 Phys. Rev. Lett. 72 2907
|
[21] |
Das Sarma S, Ghaisas S V and Kim J M 1994 Phys. Rev. E 49 122
|
[22] |
Huang Zhifeng and Gu Binglin 1996 Phys. Rev. E 54 5935
|
[23] |
Predota M and Kotrla M 1996 Phys. Rev. E 54 3933
|
[24] |
Chatraphorn P P and Das Sarma S 1998 Phys. Rev. E 57 R4863
|
[25] |
Das Sarma S, Chatraphorn P P and Toroczkai Z 2002 Phys. Rev. E 65 036144
|
[26] |
Costa B S, Euzébio J A R and Aarao Reis F D A 2003 Physica A 328 193
|
[27] |
Aarao Reis F D A 2004 Phys. Rev. E 70 031607
|
[28] |
Lai Z W and Das Sarma S 1991 Phys. Rev. Lett. 66 2348
|
[29] |
Villain J 1991 J. Phys. I 1 19
|
[30] |
Katzav E 2002 Phys. Rev. E 65 032103
|
[31] |
Tang C 1985 Phys. Rev. A 31 1977
|
[32] |
Szép J, Cserti J and Kertész J 1985 J. Phys. A 18 L413
|
[33] |
Kertész J and Vicsek T 1986 J. Phys. A 19 L257
|
[34] |
Wolf D E and Kertész J 1987 J. Phys. A 20 L257
|
[35] |
Kertész J and Wolf D E 1988 J. Phys. A 21 747
|
[36] |
L'opez J M 1999 Phys. Rev. Lett. 83 4594
|
[37] |
Xia H, Tang G, Han K, Hao D P, Chen H and Zhang L M 2006 Mod. Phys. Lett. B 30 1935 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|