Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 116401    DOI: 10.1088/1674-1056/21/11/116401
RAPID COMMUNICATION Prev   Next  

Quantum Monte Carlo study on the phase transition for a generalized two-dimensional staggered dimerized Heisenberg model

Zheng Rui (郑睿), Liu Bang-Gui (刘邦贵 )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In order to gain a deeper understanding of the quantum criticality in the explicitly staggered dimerized Heisenberg models, we study a generalized staggered dimer model named J0-J1-J2 model, which corresponds to the staggered J-J' model on square lattice and honeycomb lattice when J1/J0 equals 1 and 0, respectively. Using quantum Monte Carlo method, we investigate all the quantum critical points of these models with J1/J0 changing from 0 to 1 as a function of coupling ratio α=J2/J0. We extract all the critical values of the coupling ratio αc for these models, and we also obtain the critical exponents ν, β/ν, and η using different finite-size scaling ansatz. All these exponents are not in consistent with the three-dimensional Heisenberg universality class, indicating some unconventional quantum critical points in these models.
Keywords:  staggered dimer model      VBS-Neel transition      finite-size scaling      universality class  
Received:  28 June 2012      Revised:  12 July 2012      Accepted manuscript online: 
PACS:  64.60.F- (Equilibrium properties near critical points, critical exponents)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11174359 and 10874232) and the National Basic Research Program of China (Grant No. 2012CB932302).
Corresponding Authors:  Zheng Rui     E-mail:  rzheng@iphy.ac.cn

Cite this article: 

Zheng Rui (郑睿), Liu Bang-Gui (刘邦贵 ) Quantum Monte Carlo study on the phase transition for a generalized two-dimensional staggered dimerized Heisenberg model 2012 Chin. Phys. B 21 116401

[1] Manousakis E 1991 Rev. Mod. Phys. 63 1
[2] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[3] Balents L 2010 Nature 464 199
[4] Anderson P W 1987 Science 235 1196
[5] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694
[6] Read N and Sachdev S 1990 Phys. Rev. B 42 4568
[7] Haldane F D M 1988 Phys. Rev. Lett. 61 1029
[8] Chakravarty S, Halprin B I and Nelson D R 1989 Phys. Rev. B 39 2344
[9] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
[10] Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2004 Phys. Rev. B 70 144407
[11] Landau L D, Lifshitz E M and Pitaevskii E M 1999 Statistical Physics (New York: Butterworth-Heinemann)
[12] Wilson K G and Kogut J 1974 Phys. Rep. 12 75
[13] Levin M and Senthil T 2004 Phys. Rev. B 70 220403(R)
[14] Motrunich O I and Vishwanath A 2004 Phys. Rev. B 70 075104
[15] Sandvik A W 2007 Phys. Rev. Lett. 98 227202
[16] Sandvik A W 2010 Phys. Rev. Lett. 104 177201
[17] Jiang F J, Nyfeler M, Chandrasekharan S and Wiese U J 2008 J. Stat. Mech. P02009
[18] Kuklov A B, Matsumoto M, Prokof'ev N V, Svistunov B V and Troyer M 2008 Phys. Rev. Lett. 101 050405
[19] Kragset S, Smorgrav E, Hove J, Nogueira F S and Sudbo A 2006 Phys. Rev. Lett. 97 247201
[20] Nogueira F S, Kragset S and Sudbo A 2007 Phys. Rev. B 76 220403(R)
[21] Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2005 J. Phys. Soc. Jpn. 74 1
[22] Yoshioka D, Arakawa G, Ichinose I and Matsui T 2004 Phys. Rev. B 70 174407
[23] Takashima S, Ichinose I and Matsui T 2006 Phys. Rev. B 73 075119
[24] Wenzel S, Bogacz L and Janke W 2008 Phys. Rev. Lett. 101 127202
[25] Fritz L, Doretto R L, Wessel S, Wenzel S, Burdin S and Vojta M 2011 Phys. Rev. B 83 174416
[26] Jiang F J and Gerber U 2009 J. Stat. Mech. P09016
[27] Jiang F J 2012 Phys. Rev. B 85 014404
[28] Campostrini M, Hasenbusch M, Pelissetto A, Rossi P and Vicari E 2002 Phys. Rev. B 65 144520
[29] Bauer B et al. 2011 J. Stat. Mech. P05001
[30] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431
[31] Wenzel S and Janke W 2009 Phys. Rev. B 79 014410
[32] Binder K 1981 Z. Phys. B: Condens. Matter 43 119
[1] Thermodynamic properties of a finite Bose gas in a harmonic trap
Wang Jian-Hui(王建辉) and Ma Yong-Li(马永利). Chin. Phys. B, 2010, 19(5): 050502.
No Suggested Reading articles found!