Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110304    DOI: 10.1088/1674-1056/26/11/110304
GENERAL Prev   Next  

Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine

Xiao-Dong Wu(吴晓东)1, Qin Liao(廖骎)1, Duan Huang(黄端)1,2, Xiang-Hua Wu(吴湘华)1, Ying Guo(郭迎)1,3
1. School of Information Science and Engineering, Central South University, Changsha 410083, China;
2. State Key Laboratory of Advanced Optical Communication Systems and Networks, Center of Quantum Information Sensing and Processing, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2610, Australia
Abstract  We show that the secret key generation rate can be balanced with the maximum secure distance of four-state continuous-variable quantum key distribution (CV-QKD) by using the linear optics cloning machine (LOCM). Benefiting from the LOCM operation, the LOCM-tuned noise can be employed by the reference partner of reconciliation to achieve higher secret key generation rates over a long distance. Simulation results show that the LOCM operation can flexibly regulate the secret key generation rate and the maximum secure distance and improve the performance of four-state CV-QKD protocol by dynamically tuning parameters in an appropriate range.
Keywords:  four states      linear optics cloning machine      quantum key distribution  
Received:  23 February 2017      Revised:  09 August 2017      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153 and 61572529).
Corresponding Authors:  Duan Huang, Ying Guo     E-mail:  duan.huang@foxmail.com;guoyingcsu@sina.com

Cite this article: 

Xiao-Dong Wu(吴晓东), Qin Liao(廖骎), Duan Huang(黄端), Xiang-Hua Wu(吴湘华), Ying Guo(郭迎) Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine 2017 Chin. Phys. B 26 110304

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Lo H K, Curty M and Tamaki K 2014 Nat. Photonics 8 595
[3] Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep. 6 19201
[4] Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305
[5] Chen M and Liu X 2011 Chin. Phys. B 20 100305
[6] Erven C, Conteau C, Laamme R and Weihs G 2008 Opt. Exp. 16 1684053
[7] Liang J W, Cheng Z, Shi J J and Guo Y 2016 Acta Phys. Sin. 65 160301(in Chinese)
[8] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[9] Weedbrook C 2013 Phys. Rev. A 87 022308
[10] Ma H X, Bao W S, Li H W and Zhou C 2016 Chin. Phys. B 25 080309
[11] Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[12] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[13] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R and Grangier P 2009 J. Phys. B-At. Mol. Opt. 42 114014
[14] Shen Y and Zou H X 2010 Acta Phys. Sin. 59 1473(in Chinese)
[15] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[16] Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312
[17] Yang S and Yao Z 2017 Design. Code. Cryptogr. 82 663
[18] Wang X Y, Bai Z L, Wang S F, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 010305
[19] Guo Y, Lv G and Zeng G H 2015 Quatum. Inf. Process. 14 4323
[20] Guo Y, Qiu D L, Huang P and Zeng G H 2015 J. Phys. Soc. Jpn. 84 094003
[21] Andersen U L, Josse V and Leuchs G 2005 Phys. Rev. Lett. 94 240503
[22] Olivares S, Paris M G A and Andersen U L 2006 Acta Phys. Hung. Ser. B 26 293
[23] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
[24] Zhang H, Fang J and He G Q 2012 Phys. Rev. A 86 022338
[25] García-Patrón R 2007 Quantum Information with Optical Continuous Variables:from Bell Tests to Key Distribution (Ph.D. Thesis)(Université Libre de Bruxelles)
[26] Usenko V C and Filip R 2016 Entropy 18 20
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!