Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086401    DOI: 10.1088/1674-1056/27/8/086401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The effect of dislocations on the thermodynamic properties of Ta single crystal under high pressure by molecular dynamics simulation

Yalin Li(李亚林)1, Jun Cai(蔡军)1, Dan Mo(莫丹)1, Yandong Wang(王沿东)2
1 School of Nuclear Science & Engineering, North China Electric Power University(NCEPU), Beijing 102206, China;
2 State Key Laboratory for Advanced Metal Materials, University of Science & Technology Beijing, Beijing 100083, China
Abstract  

The thermodynamic properties of Ta metal under high pressure are studied by molecular dynamics simulation. For dislocation-free Ta crystal, all the thermodynamic properties considered are in good agreement with the results from experiments or higher level calculations. If dislocations are included in the Ta crystal, it is found that as the dislocation density increases, the hydrostatic pressure at the phase transition point of bcc→hcp and hcp→fcc decreases, while the Hugoniot temperature increases. Meanwhile, the impact pressure at the elastic-plastic transition point is found to depend on the crystallographic orientation of the pressure. As the dislocation density increases, the pressure of the elastic-plastic transition point decreases rapidly at the initial stage, then gradually decreases with the increase of the dislocation density.

Keywords:  Ta      high pressure      phase transition      dislocation density      molecular dynamics (MD)  
Received:  19 April 2018      Revised:  31 May 2018      Accepted manuscript online: 
PACS:  64.30.Ef (Equations of state of pure metals and alloys)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  64.70.K (Solid-solid transitions)  
  64.70.kd (Metals and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51231002) and the Basic Scientific Research Projects in Central Colleges and Universities (Grant No. 2018ZD10).

Corresponding Authors:  Jun Cai     E-mail:  caijun@ncepu.edu.cn

Cite this article: 

Yalin Li(李亚林), Jun Cai(蔡军), Dan Mo(莫丹), Yandong Wang(王沿东) The effect of dislocations on the thermodynamic properties of Ta single crystal under high pressure by molecular dynamics simulation 2018 Chin. Phys. B 27 086401

[1] Li Y H, Chang J Z, Li X M and Zhang L 2012 Chin. Phys. Lett. 29 046201
[2] Pang W W, Zhang P, Zhang G C and Xu A G 2015 Sci. Rep. 4 3628
[3] Zhang P L, Gong Z Z, Ji G F, et al. 2013 Chin. Phys. Lett. 30 066401
[4] Ming L C and Manghnani M H 1978 J. Appl. Phys. 49 208
[5] Xu J, Mao H K and Bell P M 1984 High Temp. High Press. 16 495
[6] Cynn H and Yoo C S 1999 Phys. Rev. B 59 8526
[7] Errandonea D, Schwager B and Ditz R 2001 Phys. Rev. B 63 132104
[8] Santamaría Pérez D, Ross M, Errandonea D, et al. 2009 J. Chem. Phys. 130 124509
[9] Burakovsky L, Preston D L and Silbar R R 2000 J. Appl. Phys. 88 6294
[10] Mukherjee S, Cohen R E and Gülseren O 2003 J. Phys.: Condens. Matter 15 855
[11] Ross M, Boehler R and Japel S 2006 J. Phys. Chem. Solids 67 2178
[12] Verma A K, Rao R S, Godwal B K 2004 J. Phys.: Condens. Matter 16 4799
[13] Hsiung L M and Lassila D H 1998 Scr. Mater. 38 1371
[14] Hsiung L M and Lassila D H 1998 Scr. Mater. 39 603
[15] Brown J M and Shaner J W 1984 Shock Waves in Condens. Matter (Amsterdam: Elsevier) p. 91
[16] Holmes N C, Moriarty J A, Gathers G R and Nellis W J 1989 J. Appl. Phys. 66 2962
[17] Mitchell A C and Nellis W J 1981 J. Appl. Phys. 52 3363
[18] Nellis W J, Mitchell A C and Young D A 2003 J. Appl. Phys. 93 304
[19] Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H and Yang L H 2002 J. Phys.: Condens. Matter 14 2825
[20] Moriarty J A 1994 Phys. Rev. B 49 12431
[21] Soderlind P and Moriarty J A 1998 Phys. Rev. B 57 10340
[22] Ravelo R, Germann T C, Guerrero O, An Q and Holian B L 2013 Phys. Rev. B 88 134101
[23] Burakovsky L, Chen S P, Preston D L, Belonoshko A B, Rosengren A, Mikhaylushkin A S, Simak S I and Moriarty J A 2010 Phys. Rev. Lett. 104 255702
[24] Johnson R A and Oh D J 1989 J. Mater. Res. 4 1195
[25] Guellil A M and Adams J B 1992 J. Mater. Res. 7 639
[26] Finnis M W and Sinclair J E 1984 Philos. Mag. A 50 45
[27] Ackl, G J and Thetford R 1987 Philos. Mag. A 56 15
[28] Dai X D, Kong Y, Li J H and Liu B X 2006 J. Phys.: Condens. Matter 18 4527
[29] Liu Z L, Cai L C, Chen X R and Jing F Q 2008 Phys. Rev. B 77 024103
[30] Lee B J, Baskes M I, Kim H and Cho Y K 2001 Phys. Rev. B 64 184102
[31] Mishin Y and Lozovoi A Y 2006 Acta Mater. 54 5013
[32] Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M A, Söderlind P, Streitz F H, Tang M and Yang L H 2006 J. Mater. Res. 21 563
[33] Hill R 1952 Proc. Phys. Soc. A 65 349
[34] Katahara K W, Manghnani M H and Fisher E S 1979 J. Phys. F 9 773
[35] Orlikowski D, Söderlind P and Moriarty J A 2006 Phys. Rev. B 74 054109
[36] Cohen R E and Gülseren O Phys. Rev. B 63 224101
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[5] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[6] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[7] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[8] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[9] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[10] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[11] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[12] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[13] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[14] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[15] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
No Suggested Reading articles found!