Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086102    DOI: 10.1088/1674-1056/27/8/086102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties

Jun-Lian Chen(陈军联)1,2, Neena Devi2, Na Li(李娜)1,2, De-Jun Fu(付德君)2, Xian-Wen Ke(柯贤文)1
1 School of Printing and Packaging, Wuhan University, Wuhan 430072, China;
2 Hubei Key Laboratory of Nuclear Solid Physics and School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  

Undoped and praseodymium-doped zinc oxide (Pr-doped ZnO) (with 2.0-mol%-6.0-mol% Pr) nanoparticles as sunlight-driven photocatalysts are synthesized by means of co-precipitation with nitrates followed by thermal annealing. The structure, morphology, and chemical bonding of the photocatalysts are studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive x-ray emission spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR), respectively. The optical properties are studied by photoluminescence (PL) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). We find that Pr doping does not change the crystallinity of ZnO; but it reduces the bandgap slightly, and restrains the recombination of the photogenerated electron-hole pairs. The photocatalytic performance of the photocatalysts is investigated by the photodegradation reaction of 10-mg/L rhodamine B (RhB) solution under simulated sunlight irradiation, showing a degradation rate of 93.75% in ZnO doped with 6.0-mol% Pr.

Keywords:  ZnO      Pr-doped      photocatalytic activity  
Received:  11 April 2018      Revised:  08 May 2018      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  82.45.-h (Electrochemistry and electrophoresis)  
Fund: 

Project supported by the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2015DFR00720), the Cooperation Program of Wuhan Science and Technology Bureau, China (Grant No. 2016030409020219), and the Shenzhen Committee on Science and Technology Innovation, China (Grant No. JCYJ20170818112901473).

Corresponding Authors:  De-Jun Fu     E-mail:  djfu@whu.edu.cn

Cite this article: 

Jun-Lian Chen(陈军联), Neena Devi, Na Li(李娜), De-Jun Fu(付德君), Xian-Wen Ke(柯贤文) Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties 2018 Chin. Phys. B 27 086102

[1] Sun J H, Dong S Y, Feng J L, Yin X J and Zhao X C 2011 J. Mol. Catal. A: Chem. 335 145
[2] Khataee A, Karimi A, Arefi-Oskoui S, Darvishi Cheshmeh Soltani R, Hanifehpour Y, Soltani B and Joo S W 2015 Ultrasonic Sonochem. 22 371
[3] Vaiano V, Matarangolo M, Sacco O, Sannino D 2017 Appl. Catal. B 209 621
[4] Körbahti B K, Artut K, Geçgel C and Özer 2011 Chem. Eng. J. 173 677
[5] Vaiano V, Matarangolo M, Sacco O and Sannino D 2018 Renewable Sustainable Energy Rev. 81 536
[6] Ong C B, Ng L Y and Mohammad A W 2018 Renewable Sustainable Energy Rev. 81 536
[7] Zhang J, Zhang Q X, Wang L H, Li X A and Huang W 2016 Sci. Rep. 6 27241
[8] Zhang J, ChenA S, Wang L H, Li X A and Huang W 2016 ACS Sus. Chem. & Eng. 4 4601
[9] Zhang J, Wang L H, Liu X H, Li X A and Huang W 2015 J. Mater. Chem. A 3 535
[10] Zhang J, Wang Q, Wang L H, Li X A and Huang W 2015 Nanoscale 7 10391
[11] Kant S, Pathania D, Singh P, Dhiman P and Kumar A 2014 Appl. Catal. B 147 340
[12] Kant S, Kalia S and Kumar A 2013 J. Alloys Compd. 578 249
[13] Hanifehpour Y, Soltani B, Amani-Ghadim A R, Hedayati B, Khomami B and Joo S W 2016 J. Ind. Eng. Chem. 34 41
[14] Devi L G, Murthy B N and Kumar S G 2010 Mater. Sci. Eng. B 166 1
[15] Manikandan A, Judith Vijaya J, John Kennedy L and Bououdina M 2013 Ceram. Int. 39 5909
[16] Li D, Huang J, Cao L, Li J, Ouyang H and Yao C 2014 Ceram. Int. 40 2647
[17] Divya N K and Pradyumnan P P 2017 Bull. Mater. Sci. 40 1405
[18] Zhao Y, Fan B F, Chen Y T, Zhuo Y, Pang Z J, Liu Z and Wang G 2016 Chin. Phys. B 25 078502
[19] Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
[20] Li D H, Wang H Q, Zhou H, Li Y P, Huang Z, Zheng J C, Wang J O, Qian H J, Ibrahim K, Chen X H, Zhan H H, Zhou Y H and Kang J Y 2016 Chin. Phys. B 25 076105
[21] Hsu M and Chang C 2014 J. Hazard. Mater. 278 444
[22] Vijayan T A, Chandramohan R, Valanarasu S, Thirumalai J and Subramanian S P 2008 J. Mater. Sci. 43 1776
[23] Siriwong C, Wetchakun N, Inceesungvorn B, Channei D, Samerjai T and Phanichphant S 2012 Prog. Cryst. Growth Charact. Mater. 58 145
[24] Uum Y R, Han B S, Lee H M, Hong S M, Kim G M and Rhee C K 2007 Phys. Stat. Sol. (c) 4 4408
[25] Hamdy M S, Nickels P, Abd-Elmaksood I H, Zhou H, El-Mossalamy E H, Alyoubi A O, Lynch S, Nathan A and Thornton G 2012 J. Photochem. Photobiol. A 228 1
[26] Ilanchezhiyan P, Kumar G M, Subramanian M and Jayavel R 2010 Mater. Sci. Eng. B 175 238
[27] Thi V H and Lee B 2017 Mater. Res. Bull. 96 171
[28] Vijayaprasath G, Murugan R, Hayakawa Y and Ravi G 2016 J. Lumin. 178 375
[29] Geng B Y, Xie T, Peng X S, Lin Y, Yuan X Y, Meng G W and Zhang L D 2003 Appl. Phys. A: Mater. Sci. Proc. 77 363
[30] Inoue Y, Okamoto M and Morimoto J 2006 J. Mater. Res. 21 1476
[31] Yang W, Wang C, He J, Chang Y, Wang J, Chen L, Chen H and Gwo S 2008 Phys. Stat. Sol. (a) 205 1190
[32] Tian Q Y, Wu W, Sun L L, Yang S L, Lei M, Zhou J, Liu Y, Xiao X H, Ren F, Jiang C Z and Roy V A L 2014 ACS Appl. Mater. Interf. 6 13088
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[10] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[11] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[12] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[13] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[14] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[15] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
No Suggested Reading articles found!