Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077503    DOI: 10.1088/1674-1056/27/7/077503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties of L10 FePt thin film influenced byrecoverable strains stemmed from the polarization of Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate

Li-Wang Liu(刘立旺)1, Cheng-Chao Hu(胡成超)2, Ye-Chuan Xu(徐野川)1, Hou-Bing Huang(黄厚兵)3, Jiang-Wei Cao(曹江伟)4, Linyun Liang(梁林云)5, Wei-Feng Rao(饶伟锋)1
1 Department of Materials Physics, and IEMM, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China;
3 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
4 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
5 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Abstract  

The magnetic properties and magnetization reversible processes of L10 FePt (3 nm)/Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) heterostructure were investigated by using the phase field model. The simulation results show that the magnetic coercivities and magnetic domains evolution in the L10 FePt thin film are significantly influenced by the compressive strains stemming from the polarization of single crystal PMN-PT substrate under an applied electric field. It is found that the magnetic coercivities increase with increasing of the compressive strain. A large compressive strain is beneficial to aligning the magnetic moments along the out-of-plane direction and to the enhancement of perpendicular magnetic anisotropy. The variations of magnetic energy densities show that when compressive strains are different at the magnetization reversible processes, the magnetic anisotropy energies and the magnetic exchange energies firstly increase and then decrease, the negative demagnetization energy peaks appear at coercivities fields, and the magnetoelastic energies are invariable at large external magnetic field with the energy maximum appearing at coercivities fields. The variations of the magnetoelastic energies bring about the perpendicular magnetic anisotropy so that the magnetoelastic energy is lower at the large external magnetic fields, whereas the appearance of magnetoelastic energy peaks is due to the magnetization-altered direction from the normal direction of the plane of the L10 FePt thin film at coercivities fields.

Keywords:  FePt      strain      magnetoelastic energy      phase field  
Received:  30 December 2017      Revised:  25 April 2018      Accepted manuscript online: 
PACS:  75.50.Ss (Magnetic recording materials)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.78.Cd (Micromagnetic simulations ?)  
  77.80.bn (Strain and interface effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474167, 51701091, and 11504020) and the Start-up Funds of NUIST, China (Grant Nos. 2243141601035 and 2243141601018).

Corresponding Authors:  Wei-Feng Rao     E-mail:  wfrao@nuist.edu.cn

Cite this article: 

Li-Wang Liu(刘立旺), Cheng-Chao Hu(胡成超), Ye-Chuan Xu(徐野川), Hou-Bing Huang(黄厚兵), Jiang-Wei Cao(曹江伟), Linyun Liang(梁林云), Wei-Feng Rao(饶伟锋) Magnetic properties of L10 FePt thin film influenced byrecoverable strains stemmed from the polarization of Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate 2018 Chin. Phys. B 27 077503

[1] Sepehri-Amin H, Iwama H, Ohkubo T, Shima T and Hono K 2017 Scr. Mater. 130 247
[2] Wang J, Hata S, Takahashi Y K, Sepehri-Amin H, Varaprasad B S D Ch S, Shiroyama T, Schreflc T and Hono K 2015 Acta Mater. 91 41
[3] Feng C, Zhao J C, Yang F, Hao S J, Gong K, Hu D, Cao Y, Jiang X M, Wang Z Q, Chen L, Li S R, Sun L, Cui L S and Yu G H 2016 ACS Appl. Mater. Interfaces 8 7545
[4] Quarterman P, Wang H, Qiu J M, Guo H H, Ma B, Liu X Q and Wang J P 2015 Appl. Phys. Lett. 107 232401
[5] Xu D B, Sun C J, Chen J S, Heald S M, Sanyal B, Rosenberg R A, Zhou T J and Chow G M 2015 J. Phys. D:Appl. Phys. 48 255001
[6] Lupo P, Orna J, Casoli F, Nasi L, Ranzieri P, Calestani D, Algarabe P, Morellón L and Albertini F 2013 EPJ. Web Conf.s 40 08001
[7] Moriyamaa T, Mitani S, Seki T, Shima T, Takanashi K and Sakuma A 2004 J. Appl. Phys. 95 6789
[8] Feng C, Zhao J C, Yang F, Gong K, Hao S J, Cao Y, Hu C, Zhang J Y, Wang Z Q, Chen L, Li S R, Sun L, Cui L S and Yu G H 2016 Sci. Rep. UK 6 23878
[9] Goyal R, Arora N, Kapoor A, Lamba S and Annapoorni S 2017 J. Alloy. Compd. 695 1014
[10] Tao L, Liu D P, Liang S H, Han X F and Guo H 2014 Euro Phys. Lett. 105 58003
[11] Ho P, Evans R F L, Chantrell R W, Han G C, Chow G M and Chen J S 2015 J. Appl. Phys. 117 213901
[12] Tsai W C, Liao S C, Huang K F, Wang D S and Lai C H 2013 Appl. Phys. Lett. 103 252405
[13] Lee M, Choi H and Chung Y C 2013 J. Appl. Phys. 113 17C729
[14] Weller D, Mosendz O, Parker G, Pisana S and Santos T S 2013 Phys. Status Solidi A 210 1245
[15] Zhang L R, Liu L W, Hayasaka K and Ishio S 2015 J. Alloy. Compd. 651 389
[16] Barmak K, Kim J, Shell S, Svedberg E B and Howard J K 2002 Appl. Phys. Lett. 80 4268
[17] Sun A C, Kuo P C, Chen S C, Chou C Y, Huang H L and Hsu J H 2004 J. Appl. Phys. 95 7264
[18] Li Y L, Huang A P, Feng T F, Chen Q, Shu X L, Chen J Y, Chen Z Y 2011 Chin. Phys. Lett. 28 067502
[19] Wang L Z, Miao J Y, Zhao Z, Liu C and Wei D 2017 Chin. Phys. Lett. 34 027501
[20] Ho H, Zhu J X, Kulovits A, Laughlin E and Zhu J G 2014 J. Appl. Phys. 116 193510
[21] Varaprasad B S D Ch S, Takahashi Y K, Wang J, Ina T, Nakamura T, Ueno W, Nitta K, Uruga T and Hono K 2014 Appl. Phys. Lett. 104 222403
[22] Dong K F, Li H H and Chen J S 2013 J. Appl. Phys. 113 233904
[23] Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y and Wei F L 2015 Appl. Phys. Express 8 063006
[24] Hu J M, Duan C G Nan C W and Chen L Q 2017 NPJ Comput. Mater. 3 18
[25] Kazaryan A, Wang Y, Jin Y M, Wang Y U, Khachaturyan A G, Wang L S, David E and Laughlin 2002 J. Appl. Phys. 92 7408
[26] Liu L W, Ohsasa K, Koyama T, Liang L Y, Zhang L R and Ishio S 2015 IEEE Trans. Magn. 51 3201903
[27] Chen L Q 2002 Annu. Rev. Mater. Res. 32 113
[28] Rao W F, Wuttig M and Khachaturyan A G 2011 Phys. Rev. Lett. 106 105703
[29] Wang Y U, Jin Y M and Khachaturyan A G 2004 Acta Mater. 52 81
[30] Liu L W, Zhang L R, Liang L Y, Ohsasa K, Koyama T, Sheng Q, Hasegawa T and Ishio S 2016 J. Alloy. Compd. 682 176
[31] Rao W F and Khachaturyan A G 2012 Acta Mater. 60 443
[32] Hu J M, Li Z, Chen L Q and Nan C W 2011 Nat. Commun. 22 553
[33] Hu J M, Yang T N, Chen L Q and Nan C W 2013 J. Appl. Phys. 114 164303
[34] Hu J M, Sheng G, Zhang J X, Nan C W and Chen L Q 2011 Appl. Phys. Lett. 98 112505
[35] Hu C C, Yang T N, Huang H B, Hu J M, Wang J J, Shi Y G, Shi D N and Chen L Q 2016 Appl. Phys. Lett. 108 141908
[36] Khachaturyan A G 1983 Theory of Structural Transformations in Solids (New York:Wiley)
[37] Li Y L, Hu S Y Liu Z K and Chen L Q 2002 Acta Mater. 50 395
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[11] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[12] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[13] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[14] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[15] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
No Suggested Reading articles found!