CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties of L10 FePt thin film influenced byrecoverable strains stemmed from the polarization of Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate |
Li-Wang Liu(刘立旺)1, Cheng-Chao Hu(胡成超)2, Ye-Chuan Xu(徐野川)1, Hou-Bing Huang(黄厚兵)3, Jiang-Wei Cao(曹江伟)4, Linyun Liang(梁林云)5, Wei-Feng Rao(饶伟锋)1 |
1 Department of Materials Physics, and IEMM, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China;
3 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
4 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
5 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA |
|
|
Abstract The magnetic properties and magnetization reversible processes of L10 FePt (3 nm)/Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) heterostructure were investigated by using the phase field model. The simulation results show that the magnetic coercivities and magnetic domains evolution in the L10 FePt thin film are significantly influenced by the compressive strains stemming from the polarization of single crystal PMN-PT substrate under an applied electric field. It is found that the magnetic coercivities increase with increasing of the compressive strain. A large compressive strain is beneficial to aligning the magnetic moments along the out-of-plane direction and to the enhancement of perpendicular magnetic anisotropy. The variations of magnetic energy densities show that when compressive strains are different at the magnetization reversible processes, the magnetic anisotropy energies and the magnetic exchange energies firstly increase and then decrease, the negative demagnetization energy peaks appear at coercivities fields, and the magnetoelastic energies are invariable at large external magnetic field with the energy maximum appearing at coercivities fields. The variations of the magnetoelastic energies bring about the perpendicular magnetic anisotropy so that the magnetoelastic energy is lower at the large external magnetic fields, whereas the appearance of magnetoelastic energy peaks is due to the magnetization-altered direction from the normal direction of the plane of the L10 FePt thin film at coercivities fields.
|
Received: 30 December 2017
Revised: 25 April 2018
Accepted manuscript online:
|
PACS:
|
75.50.Ss
|
(Magnetic recording materials)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
77.80.bn
|
(Strain and interface effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474167, 51701091, and 11504020) and the Start-up Funds of NUIST, China (Grant Nos. 2243141601035 and 2243141601018). |
Corresponding Authors:
Wei-Feng Rao
E-mail: wfrao@nuist.edu.cn
|
Cite this article:
Li-Wang Liu(刘立旺), Cheng-Chao Hu(胡成超), Ye-Chuan Xu(徐野川), Hou-Bing Huang(黄厚兵), Jiang-Wei Cao(曹江伟), Linyun Liang(梁林云), Wei-Feng Rao(饶伟锋) Magnetic properties of L10 FePt thin film influenced byrecoverable strains stemmed from the polarization of Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate 2018 Chin. Phys. B 27 077503
|
[1] |
Sepehri-Amin H, Iwama H, Ohkubo T, Shima T and Hono K 2017 Scr. Mater. 130 247
|
[2] |
Wang J, Hata S, Takahashi Y K, Sepehri-Amin H, Varaprasad B S D Ch S, Shiroyama T, Schreflc T and Hono K 2015 Acta Mater. 91 41
|
[3] |
Feng C, Zhao J C, Yang F, Hao S J, Gong K, Hu D, Cao Y, Jiang X M, Wang Z Q, Chen L, Li S R, Sun L, Cui L S and Yu G H 2016 ACS Appl. Mater. Interfaces 8 7545
|
[4] |
Quarterman P, Wang H, Qiu J M, Guo H H, Ma B, Liu X Q and Wang J P 2015 Appl. Phys. Lett. 107 232401
|
[5] |
Xu D B, Sun C J, Chen J S, Heald S M, Sanyal B, Rosenberg R A, Zhou T J and Chow G M 2015 J. Phys. D:Appl. Phys. 48 255001
|
[6] |
Lupo P, Orna J, Casoli F, Nasi L, Ranzieri P, Calestani D, Algarabe P, Morellón L and Albertini F 2013 EPJ. Web Conf.s 40 08001
|
[7] |
Moriyamaa T, Mitani S, Seki T, Shima T, Takanashi K and Sakuma A 2004 J. Appl. Phys. 95 6789
|
[8] |
Feng C, Zhao J C, Yang F, Gong K, Hao S J, Cao Y, Hu C, Zhang J Y, Wang Z Q, Chen L, Li S R, Sun L, Cui L S and Yu G H 2016 Sci. Rep. UK 6 23878
|
[9] |
Goyal R, Arora N, Kapoor A, Lamba S and Annapoorni S 2017 J. Alloy. Compd. 695 1014
|
[10] |
Tao L, Liu D P, Liang S H, Han X F and Guo H 2014 Euro Phys. Lett. 105 58003
|
[11] |
Ho P, Evans R F L, Chantrell R W, Han G C, Chow G M and Chen J S 2015 J. Appl. Phys. 117 213901
|
[12] |
Tsai W C, Liao S C, Huang K F, Wang D S and Lai C H 2013 Appl. Phys. Lett. 103 252405
|
[13] |
Lee M, Choi H and Chung Y C 2013 J. Appl. Phys. 113 17C729
|
[14] |
Weller D, Mosendz O, Parker G, Pisana S and Santos T S 2013 Phys. Status Solidi A 210 1245
|
[15] |
Zhang L R, Liu L W, Hayasaka K and Ishio S 2015 J. Alloy. Compd. 651 389
|
[16] |
Barmak K, Kim J, Shell S, Svedberg E B and Howard J K 2002 Appl. Phys. Lett. 80 4268
|
[17] |
Sun A C, Kuo P C, Chen S C, Chou C Y, Huang H L and Hsu J H 2004 J. Appl. Phys. 95 7264
|
[18] |
Li Y L, Huang A P, Feng T F, Chen Q, Shu X L, Chen J Y, Chen Z Y 2011 Chin. Phys. Lett. 28 067502
|
[19] |
Wang L Z, Miao J Y, Zhao Z, Liu C and Wei D 2017 Chin. Phys. Lett. 34 027501
|
[20] |
Ho H, Zhu J X, Kulovits A, Laughlin E and Zhu J G 2014 J. Appl. Phys. 116 193510
|
[21] |
Varaprasad B S D Ch S, Takahashi Y K, Wang J, Ina T, Nakamura T, Ueno W, Nitta K, Uruga T and Hono K 2014 Appl. Phys. Lett. 104 222403
|
[22] |
Dong K F, Li H H and Chen J S 2013 J. Appl. Phys. 113 233904
|
[23] |
Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y and Wei F L 2015 Appl. Phys. Express 8 063006
|
[24] |
Hu J M, Duan C G Nan C W and Chen L Q 2017 NPJ Comput. Mater. 3 18
|
[25] |
Kazaryan A, Wang Y, Jin Y M, Wang Y U, Khachaturyan A G, Wang L S, David E and Laughlin 2002 J. Appl. Phys. 92 7408
|
[26] |
Liu L W, Ohsasa K, Koyama T, Liang L Y, Zhang L R and Ishio S 2015 IEEE Trans. Magn. 51 3201903
|
[27] |
Chen L Q 2002 Annu. Rev. Mater. Res. 32 113
|
[28] |
Rao W F, Wuttig M and Khachaturyan A G 2011 Phys. Rev. Lett. 106 105703
|
[29] |
Wang Y U, Jin Y M and Khachaturyan A G 2004 Acta Mater. 52 81
|
[30] |
Liu L W, Zhang L R, Liang L Y, Ohsasa K, Koyama T, Sheng Q, Hasegawa T and Ishio S 2016 J. Alloy. Compd. 682 176
|
[31] |
Rao W F and Khachaturyan A G 2012 Acta Mater. 60 443
|
[32] |
Hu J M, Li Z, Chen L Q and Nan C W 2011 Nat. Commun. 22 553
|
[33] |
Hu J M, Yang T N, Chen L Q and Nan C W 2013 J. Appl. Phys. 114 164303
|
[34] |
Hu J M, Sheng G, Zhang J X, Nan C W and Chen L Q 2011 Appl. Phys. Lett. 98 112505
|
[35] |
Hu C C, Yang T N, Huang H B, Hu J M, Wang J J, Shi Y G, Shi D N and Chen L Q 2016 Appl. Phys. Lett. 108 141908
|
[36] |
Khachaturyan A G 1983 Theory of Structural Transformations in Solids (New York:Wiley)
|
[37] |
Li Y L, Hu S Y Liu Z K and Chen L Q 2002 Acta Mater. 50 395
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|