Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068101    DOI: 10.1088/1674-1056/27/6/068101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries

Hui-Liang Chen(陈辉亮)1,2,3, Zhuo-Jian Xiao(肖卓建)1,2,3, Nan Zhang(张楠)1,2,3, Shi-Qi Xiao(肖仕奇)1,2,3, Xiao-Gang Xia(夏晓刚)1,2,3, Wei Xi(席薇)1,2,3, Yan-Chun Wang(王艳春)1,2, Wei-Ya Zhou(周维亚)1,2,3, Si-Shen Xie(解思深)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Lithium-sulfur (Li-S) batteries have received more and more attention because of higher specific capacity and energy density of sulfur than current lithium-ion batteries. However, the low electrical conductivity of sulfur and its discharge product, and also the high dissolution of polysulfides restrict the Li-S battery practical applications. To improve their performances, in this work, we fabricate a novel free-standing, curled and partially reduced graphene oxide (CPrGO for short) network and combine it with sulfur to form a CPrGO-S composite as a cathode for Li-S battery. With sulfur content of 60 wt%, the free-standing CPrGO-S composite network delievers an initial capacity of 988.9 mAh·g-1. After 200 cycles, it shows a stable capacity of 841.4 mAh·g-1 at 0.2 C, retaining about 85% of the initial value. The high electrochemical performance demonstrates that the CPrGO-S network has great potential applications in energy storage system. Such improved properties can be ascribed to the unique free-standing and continous CPrGO-S network which has high specific surface area and good electrical conductivity. In addition, oxygen-containing groups on the partially reduced graphene oxide are beneficial to preventing the polysulfides from dissolving into electrolyte and can mitigate the “shuttle effect”.

Keywords:  lithium-sulfur batteries      sulfur cathode      curled reduced graphene oxide  
Received:  03 April 2018      Revised:  27 April 2018      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  88.80.ff (Batteries)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No.2012CB932302),the National Natural Science Foundation of China (Grant Nos.11634014,51172271,and 51372269),and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA09040202).

Corresponding Authors:  Wei-Ya Zhou, Si-Shen Xie     E-mail:  wyzhou@iphy.ac.cn;ssxie@iphy.ac.cn

Cite this article: 

Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深) Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries 2018 Chin. Phys. B 27 068101

[1] Ji X L and Nazar L F 2010 J. Mater. Chem. 20 9821
[2] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[3] Ji X, Lee K T and Nazar L F 2009 Nat. Mater. 8 500
[4] Yin Y X, Yao H R and Guo Y G 2016 Chin. Phys. B 25 018801
[5] Scrosati B, Hassoun J and Sun Y K 2011 Energy Environ. Sci. 4 3287
[6] Wang J, He Y S and Yang J 2015 Adv. Mater. 27 569
[7] Schuster J, He G, Mandlmeier B, Yim T, Lee K T, Bein T and Nazar L F 2012 Angew. Chem. Int. Ed. 51 3591
[8] Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y and Dai H 2011 Nano Lett. 11 2644
[9] Rong J, Ge M, Fang X and Zhou C 2014 Nano Lett. 14 473
[10] Liang Z, Liwen J, Glans P A, Yuegang Z, Junfa Z and Jinghua G 2012 PCCP 14 13670
[11] Zhou G, Yin L C, Wang D W, Li L, Pei S, Gentle I R, Li F and Cheng H-M 2013 Acs Nano 7 5367
[12] Sun L, Li M, Jiang Y, Kong W, Jiang K, Wang J and Fan S 2014 Nano Lett. 14 4044
[13] Zhao M Q, Liu X F, Zhang Q, Tian G L, Huang J Q, Zhu W C and Wei F 2012 Acs Nano 6 10759
[14] Peng H J, Huang J Q, Zhao M Q, Zhang Q, Cheng X B, Liu X Y, Qian W Z and Wei F 2014 Adv. Funct. Mater. 24 2772
[15] Ma G, Wen Z, Jin J, Lu Y, Wu X, Wu M and Chen C 2014 J. Mater. Chem. A 2 10350
[16] Wu F, Chen J Z, Chen R J, Wu S X, Li L, Chen S and Zhao T 2011 J. Mater. Chem. C 115 6057
[17] Bai H, Li C and Shi G 2011 Adv. Mater. 23 1089
[18] Wu H, Huang Y, Zong M, Fu H and Sun X 2015 Electrochim. Acta 163 24
[19] Yoo S, Lee J, Kim J M, Seong C Y, Seong K D and Piao Y 2016 J. Electroanal. Chem. 780 19
[20] Segal M 2009 Nat. Nanotechnol. 4 611
[21] Yang X, Zhu J, Qiu L and Li D 2011 Adv. Mater. 23 2833
[22] Lu S, Cheng Y, Wu X and Liu J 2013 Nano Lett. 13 2485
[23] Luo S, Yao M, Lei S, Yan P, Wei X, Wang X, Liu L and Niu Z 2017 Nanoscale 9 4646
[24] Zheng C, To J W F, Chao W, Zhenda L, Nan L, Chortos A, Lijia P, Fei W, Yi C and Zhenan B 2014 Adv. Energy Mater. 4 1400207
[25] Ham H, Khai T V, Park N H, So D S, Lee J W, Na H G, Kwon Y J, Cho H Y and Kim H W 2014 Nanotechnology 25 235601
[26] Strankowski M, Wł odarczyk D, Piszczyk Ł and Strankowska J 2016 J. Spectrosc. 2016 1
[27] Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Morańska M and Setkiewicz M 2016 Sensors 16 103
[28] Huang Z D, Zhang B A, Oh S W, Zheng Q B, Lin X Y, Yousefi N and Kim J K 2012 J. Mater. Chem. 22 3591
[29] Zhang J, Dong Z, Wang X, Zhao X, Tu J, Su Q and Du G 2014 J. Power Sources 270 1
[30] Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z, Exarhos G J and Liu J 2012 Adv. Mater. 24 1176
[31] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J and Zhang Y 2011 J. Am. Chem. Soc. 133 18522
[32] Zhou G M, Wang D W, Li F, Hou P X, Yin L C, Liu C, Lu G Q, Gentle I R and Cheng H M 2012 Energy Environ. Sci. 5 8901
[33] Guo J C, Xu Y H and Wang C S 2011 Nano Lett. 11 4288
[34] Zheng G Y, Yang Y, Cha J J, Hong S S and Cui Y 2011 Nano Lett. 11 4462
[35] Wang Z Y, Dong Y F, Li H J, Zhao Z B, Wu H B, Hao C, Liu S H, Qiu J S and Lou X W 2014 Nat. Commun. 5 5002
[36] Zhao M Q, Zhang Q, Huang J Q, Tian G L, Nie J Q, Peng H J and Wei F 2014 Nat. Commun. 5 3410
[37] Xiang M W, Yang L, Zheng Y F, Huang J, Jing P, Wu H, Zhang Y and Liu H 2017 J. Mater. Chem. A 5 18020
[38] Yang J, Chen F, Li C, Bai T, Long B and Zhou X Y 2016 J. Mater. Chem. A 4 14324
[39] Chung S H and Manthiram A 2013 Electrochim. Acta 107 569
[1] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[2] Scientific and technological challenges toward application of lithium-sulfur batteries
Ya-Xia Yin(殷雅侠), Hu-Rong Yao(姚胡蓉), Yu-Guo Guo(郭玉国). Chin. Phys. B, 2016, 25(1): 018801.
No Suggested Reading articles found!