CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study |
Jun-Chao Liu(刘俊超)1,2, Zhi-Hong Yuan(袁志红)1, Shi-Chang Li(李世长)1, Xiang-Gang Kong(孔祥刚)1, You Yu(虞游)3, Sheng-Gui Ma(马生贵)1, Ge Sang(桑革)4, Tao Gao(高涛)1 |
1. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China; 3. College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; 4. Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9071-35, Jiangyou 621907, China |
|
|
Abstract The physical properties including structural, electronic, vibrational and thermodynamic properties of Zr1-xHfxCo (x is the concentration of constituent element Hf, and changes from 0 to 1) are investigated in terms of the ABINIT program. The results reveal that all of Zr1-xHfxCo have similar physical properties. When Hf concentration x gradually increases from 0.0 to 1.0, the lattice constant decreases from 3.217 Å to 3.195 Å very slowly. The calculated density of states (DOS) indicates that the metallic nature is enhanced and the electrical conductivity turns better with the increase of Hf. Moreover, as Hf concentration increases from 0 to 1, the Fermi energy gradually increases from -6.96 eV to -6.21 eV, and the electronic density of states at the Fermi level (N(Ef)) decreases from 2.795 electrons/eV f.u. down to 2.594 electrons/eV f.u., both of which imply the decrease of chemical stability. The calculated vibrational properties show that the increase of Hf concentration from 0 to 1 causes the maximum vibrational frequency to decrease gradually from about 223 cm-1 to 186 cm-1, which suggests a lower dispersion gradient and lower phonon group velocities for these modes. Finally, the phonon related thermodynamic properties are obtained and discussed.
|
Received: 27 November 2017
Revised: 15 January 2018
Accepted manuscript online:
|
PACS:
|
78.30.Er
|
(Solid metals and alloys ?)
|
|
21.65.-f
|
(Nuclear matter)
|
|
21.60.De
|
(Ab initio methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21573200). |
Corresponding Authors:
Tao Gao
E-mail: gaotao@scu.edu.cn
|
Cite this article:
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛) Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study 2018 Chin. Phys. B 27 047802
|
[1] |
Devillers M, Sirch M, Bredendiek-Kämper S and Penzhorn R 1990 Chem. Mater. 2 255
|
[2] |
Shmayda W, Heics A and Kherani N 1990 J. Less-Common Met. 162 117
|
[3] |
Konishi S, Nagasaki T, Yokokawa N and Naruse Y 1989 Fusion Eng. Des. 10 355
|
[4] |
Penzhorn R-D and Sirch M 1990 J. Nucl. Mater. 170 217
|
[5] |
Qi Y, Ju X, Wan C B, Qiu J, Xub Y, Wang S M, Liu X P and Jiang L J 2010 Int. J. Hydrogen Energy 35 2931
|
[6] |
Kou H Q, Huang Z Y, Luo W H, Sang S, Meng D Q, Luo D L, Zhang G H, Chen H, Zhou Y and Hu C W 2015 Appl. Energy 145 27
|
[7] |
Jat R A, Parida S, Nuwad J, Agarwal R and Kulkarni S 2013 J. Therm. Anal. Calorim. 1 37
|
[8] |
Hayashi T, Suzuki T, Konishi S, Yamanishi T, Nishi M and Kurita K 2002 Fusion Sci. Technol. 41 801
|
[9] |
Shim M, Chung H, Cho S and Yoshida H 2008 Fusion Sci. Technol. 53 830
|
[10] |
Konishi S, Nagasaki T and Okuno K 1995 J. Nucl. Mater. 223 294
|
[11] |
Hara M, Okabe T, Mori K and Watanabe K 2000 Fusion Eng. Des. 49-50 831
|
[12] |
Devillers M, Sirch M and Penzhorn R 1992 Chem. Mater. 4 631
|
[13] |
Kou H Q, Sang G, Luo W H, Huang Z Y, Meng D Q, Zhang G H, Deng J, Luo Z P, He W B and Hu C W 2015 Int. J. Hydrogen Energy 40 10923
|
[14] |
Zhao Y M, Li R F, Tang R H, Li B Y, Yu R H, Liu W, Koud H Q and Meng J B 2014 J. Energy Chem. 23 9
|
[15] |
Peng L, Jiang C, Xu Q and Wu X 2013 Fusion Eng. Des. 88 299
|
[16] |
Li G, Zhou H and Gao T 2012 J. Nucl. Mater. 424 220
|
[17] |
Chattaraj D, Parida S, Dash S and Majumder C 2012 Int. J. Hydrogen Energy 37 18952
|
[18] |
Chattaraj D, Parida S, Dash S and Majumder C 2015 J. Alloys Compd. 629 297
|
[19] |
Chattaraj D, Jat R A, Parida S, Agarwal R and Dash S 2015 Thermochim. Acta 614 16
|
[20] |
Lu W F, Li C J, Sarac B, Şopu C, Yi J H, Tan J, Stoica M and Eckert J 2017 J. Alloys Compd. 705 445
|
[21] |
Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
|
[22] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[23] |
Nordheim L 1931 Zur elektronentheorie der metalle. I. Annalen der Physik 401 607
|
[24] |
Yu C J and Emmerich H 2007 J. Phys.:Condens. Matter 19 306203
|
[25] |
Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
|
[26] |
Ghosez P, Desquesnes D, Gonze X and Rabe K 2000 AIP Conf. Proc. 102
|
[27] |
Bouamama K, Daoud K and Kassali K 2005 Model. Simul. Mater. Sci. Eng. 13 1153
|
[28] |
Miao R, Huang G and Yang J 2016 Solid State Commun. 233 30
|
[29] |
Bahloul B, Bentabet A, Amirouche L, Bouhadda Y, Bounab S and Deghfel B 2014 J. Phys. Chem. Solids 75 307
|
[30] |
Bustamante-Romero I, De la Pe na-Seaman O, Heid R and Bohnen K P 2016 J. Magn. Magn. Mater. 420 97
|
[31] |
Wei X P, Chu Y D and Deng J B 2014 J. Magn. Magn. Mater. 354 345
|
[32] |
Yuan X L, Xue M A, Chen W and An T Q 2014 Front. Phys. 9 219
|
[33] |
Konishi S, Nagasaki T, Hayashi T and Okuno K 1995 J. Nucl. Mater. 223 300
|
[34] |
Flanagan T B, Noh H and Luo S 2016 J. Alloys Compd. 677 163
|
[35] |
Gupta M 1999 J. Alloys Compd. 293-295 190
|
[36] |
Yaar I, Gavra Z, Cohen D, Levitin Y, Kimmel G, Kahane S, Hemy A and Berant Z 1999 Hyperfine Interact. 120/121 563
|
[37] |
Broyden C G 1970 IMA. J. Appl. Math. 6 222
|
[38] |
Fletcher R 1970 Comput. J. 13 317
|
[39] |
Goldfarb D 1970 Math. Comput. 24 23
|
[40] |
Shanno D F 1970 Math. Comput. 24 647
|
[41] |
Williamson I, Li S, Hernandez A C, Lawson M, Chen Y and Li L 2017 Chem. Phys. Lett. 674 157
|
[42] |
Lee C and Gonze X 1995 Phys. Rev. B 51 8610
|
[43] |
Ma S G, Shen Y H, Gao T and Chen P H 2015 Int. J. Hydrogen Energy 40 3762
|
[44] |
Errea I, Rousseau B and Bergara A 2011 Phys. Rev. Lett. 106 165501
|
[45] |
Norouzzadeh P, Myles C W and Vashaee D 2013 J. Phys.:Condens. Matter 25 475502
|
[46] |
Liu B, Gu M and Liu X 2007 Appl. Phys. Lett. 91 172102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|