Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096801    DOI: 10.1088/1674-1056/abea94
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film

Qing-Jian Lu(陆青鑑)1,2, Min Gao(高敏)1,2,†, Chang Lu(路畅)1,2, Fei Long(龙飞)3, Tai-Song Pan(潘泰松)1,2, and Yuan Lin(林媛)1,2,4,‡
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China;
4 Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Vanadium dioxide (VO2) is a strongly correlated material, and it has become known due to its sharp metal-insulator transition (MIT) near room temperature. Understanding the thermal properties and their change across MIT of VO2 thin film is important for the applications of this material in various devices. Here, the changes in thermal conductivity of epitaxial and polycrystalline VO2 thin film across MIT are probed by the time-domain thermoreflectance (TDTR) method. The measurements are performed in a direct way devoid of deposition of any metal thermoreflectance layer on the VO2 film to attenuate the impact from extra thermal interfaces. It is demonstrated that the method is feasible for the VO2 films with thickness values larger than 100 nm and beyond the phase transition region. The observed reasonable thermal conductivity change rates across MIT of VO2 thin films with different crystal qualities are found to be correlated with the electrical conductivity change rate, which is different from the reported behavior of single crystal VO2 nanowires. The recovery of the relationship between thermal conductivity and electrical conductivity in VO2 film may be attributed to the increasing elastic electron scattering weight, caused by the defects in the film. This work demonstrates the possibility and limitation of investigating the thermal properties of VO2 thin films by the TDTR method without depositing any metal thermoreflectance layer.
Keywords:  vanadium dioxide thin film      thermal conductivity      time-domain thermoreflectance  
Received:  30 December 2020      Revised:  01 February 2021      Accepted manuscript online:  01 March 2021
PACS:  68.60.Dv (Thermal stability; thermal effects)  
  66.30.Xj (Thermal diffusivity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61825102, 51872038, and 52021001) and the “111” Project, China (Grant No. B18011).
Corresponding Authors:  Min Gao, Yuan Lin     E-mail:  mingao@uestc.edu.cn;linyuan@uestc.edu.cn

Cite this article: 

Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛) Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film 2021 Chin. Phys. B 30 096801

[1] Jerominek H, Picard F and Vincent D 1993 Opt. Eng. 32 2092
[2] Lu C, Liang W, Gao M, Luo S N and Lin Y 2019 IEEE Trans. Terahertz Sci. Technol. 9 177
[3] Zhou G, Dai P, Wu J, Jin B, Wen Q, Zhu G, Shen Z, Zhang C, Kang L, Xu W, Chen J and Wu P 2017 Opt. Express 25 17322
[4] Wu C, Feng F and Xie Y 2013 Chem. Soc. Rev. 42 5157
[5] Kruger B A, Joushaghani A and Poon J K S 2012 Opt. Express 20 23598
[6] Zhao J X, Song J L, Zhou Y, Liu Y C and Zhou J H 2020 Chin. Phys. Lett. 37 064204
[7] Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N and Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201
[8] Oh D W, Ko C, Ramanathan S and Cahill D G 2010 Appl. Phys. Lett. 96 151906
[9] Dahal K, Zhang Q, He R, Mishra I K and Ren Z 2017 J. Appl. Phys. 121 155103
[10] Sangwook L, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O and Wu J 2017 Science 355 371
[11] Jin L, Zeltmann S E, Choe H S, Liu H, Allen F I, Minor A M and Wu J 2020 Phys. Rev. B 102 041120
[12] Chen L, Xiang Z, Tinsman C, Asaba T, Huang Q, Zhou H and Li L 2018 Appl. Phys. Lett. 113 061902
[13] Cahill D G 2004 Rev. Sci. Instrum. 75 5119
[14] Taketoshi N, Baba T, Schaub E and Ono A 2003 Rev. Sci. Instrum. 74 5226
[15] Capinski W S and Maris H J 1996 Rev. Sci. Instrum. 67 2720
[16] Bonello B, Perrin B and Rossignol C 1998 J. Appl. Phys. 83 3081
[17] Baba T, Taketoshi N and Yagi T 2011 Jpn. J. Appl. Phys. 50 11RA01
[18] Piotrowski M, Franco M, Sousa V, Rodrigues J, Deepak F L, Kakefuda Y, Kawamoto N, Baba T, Owens-Baird B, Alpuim P, Kovnir K, Mori T and Kolen'ko Y V 2018 J. Phys. Chem. C 122 27127
[19] Kakefuda Y, Yubuta K, Shishido T, Yoshikawa A, Okada S, Ogino H, Kawamoto N, Baba T and Mori T 2017 APL Mater. 5 126103
[20] Liu K, Zhao J, Sun H, Guo H, Dai B and Zhu J 2019 Chin. Phys. B 28 060701
[21] Zhang Y Y, Cheng R, Ni D, Tian M, Lu J W and Zhao Y 2019 Chin. Phys. B 28 078105
[22] Jia Q X, McCleskey T M, Burrell A K, Lin Y, Collis G E, Wang H, Li A D Q and Foltyn S R 2004 Nat. Mater. 3 529
[23] Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Chen C L, Jia Q X and Lin Y 2012 Appl. Phys. Lett. 101
[24] Liang W, Gao M, Lu C, Zhang Z, Chan C H, Zhuge L, Dai J, Yang H, Chen C, Park B H, Jia Q and Lin Y 2018 ACS Appl. Mater. Interfaces 10 8341
[25] Allen P B, Wentzcovitch R M, Schulz W W and Canfield P C 1993 Phys. Rev. B 48 4359
[26] Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T and Basov D N 2006 Phys. Rev. B 74 205118
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[13] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
No Suggested Reading articles found!