Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047804    DOI: 10.1088/1674-1056/27/4/047804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film

Feng Shan(单锋)1,3, Xiao-Yang Zhang(张晓阳)1,2,3, Jing-Yuan Wu(吴静远)1,3, Tong Zhang(张彤)1,2,3
1. Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China;
2. Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
3. Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou 215123, China
Abstract  

Here, a plasmon-enhanced random laser was achieved by incorporating gold nanostars (NS) into disordered polymer and CdSe/ZnS quantum dots (QDs) gain medium films, in which the surface plasmon resonance of gold NS can greatly enhance the scattering cross section and bring a large gain volume. The random distribution of gold NS in the gain medium film formed a laser-mode resonator. Under a single-pulse pumping, the scattering center of gold NS-based random laser exhibits enhanced performance of a lasing threshold of 0.8 mJ/cm2 and a full width as narrow as 6 nm at half maximum. By utilizing the local enhancement characteristic of the electric field at the sharp apexes of the gold NS, the emission intensity of the random laser was increased. In addition, the gold NS showed higher thermal stability than the silver nanoparticles, withstanding high temperature heating up to 200℃. The results of metal nanostructures with enriched hot spots and excellent temperature stability have tremendous potential applications in the fields of biological identification, medical diagnostics, lighting, and display devices.

Keywords:  plasmon      gain medium      gold nanostars      random laser  
Received:  23 December 2017      Revised:  31 January 2018      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.68.+m (Optical properties of surfaces)  
  73.21.La (Quantum dots)  
  42.55.Zz (Random lasers)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0205800), the National Natural Science Foundation of China (Grant Nos. 11734005, 61307066, and 61450110442), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130630), the Doctoral Fund of Ministry of Education of China (Grant No. 20130092120024), the Innovation Fund of School of Electronic Science and Engineering, Southeast University, China (Grant No. 2242015KD006), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant Nos. YBJJ1513 and YBJJ1613).

Corresponding Authors:  Tong Zhang     E-mail:  tzhang@seu.edu.cn

Cite this article: 

Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤) Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film 2018 Chin. Phys. B 27 047804

[1] Jiang X and Soukoulis C M 2000 Phys. Rev. Lett. 85 70
[2] Apalkov V M, Raikh M E and Shapiro B 2002 Phys. Rev. Lett. 89 016802
[3] Vanneste C, Sebbah P and Cao H 2007 Phys. Rev. Lett. 98 143902
[4] Oleg Z and Lev D 2010 J. Opt. 12 024001
[5] Cao H, Xu J Y, Seelig E W and Chang R P 2000 Appl. Phys. Lett. 76 2997
[6] Stefano G, Stefano C, Oleg Y and Diederik S W 2004 Phys. Rev. Lett. 93 263901
[7] Diederik S W and Stefano C 2001 Nature 414 708
[8] Wiersma D S 2008 Nat. Phys. 4 359
[9] Diederik S W and Lagendijk A 1996 Phys. Rev. E 54 4256
[10] Takashi O and Shiro A 2010 Opt. Rev. 17 300
[11] Brito A M, André G, Anderson S L, Alcenisio J J and Cid B A 2010 J. Appl. Phys. 108 033508
[12] Kitur J, Zhu G, Bahoura M and Noginov M A 2010 J. Opt. 12 024009
[13] Que M L, Wang X D, Peng Y Y and Pan C F 2017 Chin. Phys. B 26 067301
[14] Zhang X Y, Hu A, Zhang T, Lei W, Xue X J, Zhou Y H and Duley W W 2011 ACS Nano 5 9082
[15] Cho C Y and Park S J 2016 Opt. Express 24 7488
[16] Shan F, Zhang X Y, Fu X C, Zhang L J, Su D, Wang S J, Wu J Y and Zhang T 2017 Sci. Rep. 7 6813
[17] Li L, Daisi H, Wei B, Meng F, Peng Z, Dingke Z and Shi C 2017 J. Alloys Compd. 693 876
[18] Zhai T, Chen J, Chen L, Wang J, Wang L, Liu D H, Li S, Liu H and Zhang X P 2015 Nanoscale 7 2235
[19] Wang Z, Meng X, Seung H C, Sebastian K, Young L K, Hui C, Vladimir M S and Alexandra B 2016 Nano Lett. 16 2471
[20] Tianrui Z, Xu Z, Xiao W, Yi W, Fei L and Xin Z 2016 Opt. Express 24 437
[21] Qing C, Xiao S, Xuan L, Jun T, Da L and Zhao W 2017 Nanophotonics 6 1151
[22] Yosia N W, Jinwoo K, Won M C, Sung H P and Mun H K 2017 Nanoscale 9 11705
[23] Mahesh K G, Robert W J and Timothy L K 2016 Dalton Trans. 45 9827
[24] Kee E L, Amelia V H and Timothy L K 2014 Phys. Chem. Chem. Phys. 16 12407
[25] Cai K, Xiao Z and Guang W 2006 J. Phys. Chem. B 110 4651
[26] Zhang X Y, Zhang T, Hu A, Song Y J and Duley W W 2012 Appl. Phys. Lett. 101 153118
[27] Zhong H H, Zhou J H, Gu C J, Wang M, Fang Y T, Xu T and Zhou 2017 Chin. Phys. B 26 127301
[28] Zhang X Y, Zhou H L, Shan F, Xue X M, Su D, Liu Y R, Chen Y Z, Wu J Y and Zhang T 2017 RSC Adv. 7 55680
[29] Fan G H, Qu S L, Guo Z Y, Wang Q and Li Z G 2012 Chin. Phys. B 21 047804
[30] Yan C, Liu X, Wei C, Zheng X, Yue H and Ling L 2017 Chin. Phys. B 26 017807
[31] Shi X, Wang Y, Wang Z, Sun Y, Liu D H, Zhang Y, Li Q and Shi J W 2013 Appl. Phys. Lett. 103 023504
[32] Zhang T, Song Y J, Zhang X Y and Wu J Y 2014 Sensors 14 5860
[33] Peng Z A and Peng X 2001 J. Am. Chem. Soc. 123 183
[34] Zhu S Q, Zhang T, Guo X L, Wang Q L, Liu X and Zhang X Y 2012 Nanoscale Res. Lett. 7 613
[35] Johannes Z, Christian W, Cynthia V, Calin H and Thomas A K 2016 ACS Photonics 3 919
[36] Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N and Zhang T 2018 J. Mater. Chem. C
[37] Lee H, Kim G H, Lee J H, Kim N H, Nam J M and Sun Y D 2015 Nano Lett. 15 4628
[38] Li Z P and Xu H X 2016 Adv. Phys. X 1 492
[39] Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J and Bawen M G 2000 Science 290 314
[40] Kimov V I, Mikhailovsky A A, Mcbranch D W, Leatherdale C A and Bawendi M G 2000 Science 287 1011
[41] Liao C, Xu R L, Xu Y, Zhang C, Xiao M, Zhang L, Lu C, Cui Y P and Zhang J Y 2016 J. Phys. Chem. Lett. 7 4968
[42] Klimov V I, Ivanov S A, Nanda J, Achermann M, Bezel I, Mcguire J A and Piryatinski A 2007 Nature 447 441
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[11] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[12] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[13] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
No Suggested Reading articles found!