Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047801    DOI: 10.1088/1674-1056/27/4/047801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal

Mohd Anis1, M I Baig2, S S Hussaini3, M D Shirsat4, Mohd Shkir5,6, H A Ghramh5
1. Department of Physics, Sant Gadge Baba Amravati University, Amravati-444602, Maharashtra, India;
2. Prof. Ram Meghe College of Engineering and Management, Amravati-444701, Maharashtra, India;
3. Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed-431122, Maharashtra, India;
4. RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb-Ambedkar-Marathwada University, Aurangabad-431005, Maharashtra, India;
5. Research Center for Advanced Materials Science(RCAMS), King Khalid University, P. O. Box 9004, Abha-61413, Saudi Arabia;
6. Advanced Functional Materials & Optoelectronic Laboratory(AFMOL), Department of Physics, College of Science, King Khalid University, P. O. Box 9004, Abha-61413, Saudi Arabia
Abstract  

In the current investigation, L-proline cadmium chloride monohydrate (LPCC) single crystal is grown by a slow solvent evaporation technique to identify its credibility for nonlinear optical device applications. The constituent elements of LPCC crystal are determined by the energy dispersive spectroscopic (EDS) technique. The single crystal x-ray diffraction technique is used to determine the structural dimensions of LPCC crystal. The UV-visible studies are carried out within a wavelength range of 200 nm-1100 nm to determine the optical transmittance of LPCC crystal. The linear optical parameters of LPCC crystal are evaluated using the transmittance data to discuss its importance for distinct optical devices. The Nd:YAG laser assisted Kurtz-Perry test is carried out to determine the enhancement in second harmonic generation efficiency of LPCC crystal with reference to KDP crystal. The Z-scan technique is employed to assess the third order nonlinear optical (TONLO) properties of LPCC crystal at 632.8 nm. The Z-scan data are utilized to evaluate the TONLO refraction, absorption and susceptibility of LPCC crystal. The color oriented luminescence behavior of LPCC crystal is investigated within a spectral range of 350 nm-700 nm. The dependence of dielectric constant and dielectric loss on temperature and frequency is evaluated through the dielectric measurement studies.

Keywords:  crystal growth      dielectric studies      nonlinear optical materials      optical studies  
Received:  03 November 2017      Revised:  01 January 2018      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.60.-b (Other luminescence and radiative recombination)  
Corresponding Authors:  Mohd Anis     E-mail:  loganees@gmail.com

Cite this article: 

Mohd Anis, M I Baig, S S Hussaini, M D Shirsat, Mohd Shkir, H A Ghramh Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal 2018 Chin. Phys. B 27 047801

[1] Wang X Q, Xu D, Lu M K, Yuan D R and Xu S X 2001 Mater. Res. Bull. 36 879
[2] He Y H, Lan Y Z, Zhan C H, Feng Y L and Su H 2009 Inorg. Chem. Acta 362 1952
[3] Verbiest T, Houbrechts S, Kauranen M, Clays K and Persoons A 1997 J. Mater. Chem. 7 2175
[4] Lu G W, Xia H R, Wang X Q, Xu D, Chen Y and Zhou Y Q 2001 Mater. Sci. Eng. B 87 117
[5] Sugandhi K, Verma S, Jose M, Joseph V and Das S J 2013 Opt. Laser Technol. 54 347
[6] Peter M E and Ramasamy P 2010 J. Cryst. Growth 312 1952
[7] Hanumantharao R and Kalainathan S 2012 Mater. Lett. 74 74
[8] Liu X J, Xu D, Wei X Q, Ren M J and Zhang G H 2010 Mater. Sci. Eng. B 166 203
[9] Bright K C and Freeda T H 2010 Physica B 405 3857
[10] Sethuraman K, Babu R R, Gopalakrishnan R and Ramasamy P 2008 Cryst. Growth Des. 8 1863
[11] Shkir M, Alfaify S, Ajmal Khan M, Dieguez E and Perles J 2014 J. Cryst. Growth 391 104
[12] Arockia Avila S, Selvakumar S, Francis M and Rajesh A L 2017 J. Mater. Sci. Mater. Electron. 28 1051
[13] Maadeswaran P and Chandrasekaran J 2011 Optik 122 1128
[14] Boopathi K, Jagan R and Ramasamy P 2016 Appl. Phys. A 122 689
[15] Raj C J and Das S J 2008 Cryst. Growth Des. 8 2729
[16] Anbuselvi D, Theras J E M, Jayaraman D and Joseph V 2013 Physica B 423 38
[17] Kandasamy A, Siddeswaran R, Murugakoothan P, Kumar P S and Mohan R 2007 Cryst. Growth Des. 7 183
[18] Prakash J T J and Kumararaman S 2008 Mater. Lett. 62 4097
[19] Shakir M, Kushwaha S K, Maurya K K, Bhatt R C, Rashmi, Wahab M A and Bhagavannarayana G 2010 Mater. Chem. Phys. 120 566
[20] Singh P, Hasmuddin M, Shakir M, Vijayan N, Abdullah M M, Ganesh V and Wahab M A 2013 Mater. Chem. Phys. 142 154
[21] Sun Z H, Xu D, Wang X Q, Zhang G H, Yu G, Zhu L Y and Fan H L 2009 Mater. Res. Bull. 44 925
[22] Sivakumar N, Kanagathara N, Varghese B, Bhagavannarayana G, Gunasekaran S and Anbalagan G 2014 Spectrochem. Acta A 118 603
[23] Shaikh R N, Anis M, Shirsat M D and Hussaini S S 2014 J. Optoelectron. Adv. Mater. 16 1147
[24] Kakani S L and Kakani A 2004 Material Science (New Delhi:New Age International) p. 417
[25] Anis M, Ramteke S P, Shirsat M D, Muley G G and Baig M I 2017 Opt. Mater. 72 590
[26] Weber M J 2003 Handbook of Optical Materials (New York:CRC Press)
[27] Bass M 1995 Handbook of Optics, Volume 2(USA:Mc-Graw Hill) p. 33.12
[28] Ramteke S P, Baig M I, Shkir M, Kalainathan S, Shirsat M D, Muley G G and Anis M 2018 Opt. Laser Technol. 104 83
[29] Ganapayya B, Jayarama A, Sankolli R, Hathwar V R and Dharmaprakash S M 2012 J. Mol. Struc. 1007 175
[30] Anis M, Pandian M S, Baig M I, Ramasamy P and Muley G G 2016 Physica B 501 5
[31] Sangeetha K, Prasad L G and Mathammal R 2016 Physica B 501 5
[32] Rajagopalan N R and Krishnamoorthy P 2017 J. Inorg. Organomet. Polym. Mater. 27 296
[33] Anis M and Muley G G 2016 Phys. Scr. 91 85801
[34] Chen C T and Liu G Z 1986 Ann. Rev. Mater. Sci. 16 203
[35] Schubert E F, Kim J K and Xi J Q 2007 Phys. Stat. Sol. B 244 3002
[36] Raja M V A, Anand D P and Madhavan J 2013 Sci. ActaXaveriana 4 41
[37] Kurtz S K and Perry T T 1968 J. Appl. Phys. 39 3698
[38] Wojciechowski A, Alzayed N, Kityk I, Berdowski J, and Tylczyńki Z 2010 Opt. Appl. XL 1007
[39] Pahurkar V G, Anis M, Baig M I, Ramteke S P and Muley G G 2017 Optik 142 421
[40] Li Y, Wang M, Zhu T, Meng X, Zhong C, Chen X and Qin J 2012 Dalton Trans. 41 763
[41] Bahae M S, Said A A, Wei T H, Hagan D J and Stryland E W V 1990 IEEE J. Quantum Electron. 26 760
[42] Baig M I, Anis M, Kalainathan S, Babu B and Muley G G 2017 Mater. Technol. Adv. Perform. Mater. 32 560
[43] Gu B, Wang H T and Ji W 2009 Opt. Lett. 34 2769
[44] Ramteke S P, Anis M, Pandian M S, Kalainathan S, Baig M I, Ramasamy P and Muley G G 2018 Opt. Laser Technol. 99 197
[45] Sun X B, Wang X Q, Ren Q, Zhang G H, Yang H L and Feng L 2006 Mater. Res. Bull. 41 177
[46] Rasal Y B, Anis M, Shirsat M D and Hussaini S S 2017 Mater. Res. Innov.
[47] Muthuraja A and Kalainathan S 2017 Mater. Technol. Adv. Perform. Mater. 32 335
[48] Azhar S M, Anis M, Hussaini S S, Kalainathan S, Shirsat M D and Rabbani G 2016 Mater. Sci. Poland 34 800
[49] Zhang Y D, Zhao Z Y, Yao C B, Yang L, Li J and Yuan P 2014 Opt. Laser Technol. 58 207
[50] Zidana M D, Al-Ktaifani M M and Allahham A 2017 Opt. Laser Technol. 90 174
[51] Azhar S M, Hussaini S S, Shirsat M D, Rabbani G, Shkir M, AlFaify S, Ghramh H A, Baig M I and Anis M 2017 Mater. Res. Innov.
[52] Kumar R S S, Rao S V, Giribabu L and Rao D N 2007 Chem. Phys. Lett. 447 274
[53] Shaikh R N, Anis M, Shirsat M D and Hussaini S S 2018 Optik 154 435
[54] Anis M, Hussaini S S, Shirsat M D, Shaikh R N and Muley G G 2016 Mater. Res. Express 3 106204
[55] Anis M, Baig M I, Pandian M S, Ramasamy P, AlFaify S, Ganesh V, Muley G G and Ghramh H A 2018 Cryst. Res. Technol.
[56] Sauer M, Hofkens J and Enderlein J 2011 Handbook of Fluorescence Spectroscopy and Imaging (Weinheim:Wiley-VCH)
[57] Chandran S, Paulraj R and Ramasamy P 2015 Mater. Res. Bull. 68 210
[58] Timothy H G 2000 Photoluminescence in analysis of surfaces and interfaces, in Encyclopedia of Analytical Chemistry (Chichester:John Wiley & Sons) p. 9209
[59] Kajamuhideen M S, Senthuraman K, Ramamurthi K and Ramasamy P 2017 Opt. Laser Technol. 91 159
[60] Shaikh R N, Anis M, Shirsat M D and Hussaini S S 2015 Mater. Technol. Adv. Perform. Mater. 19 187
[61] Subhashini R, Sathya D, Sivashankar V, Mageshwari P S L and Arjunan S 2016 Opt. Mater. 62 357
[62] Riscob B, Shakir M, Sundar J K, Natarajan S, Wahab M A and Bhagavannarayana G 2011 Spectrochem. Acta A 78 543
[63] Anis M, Muley G G, Baig M I, Hussaini S S and Shirsat M D 2017 Mater. Res. Innov. 21 439
[64] Singh P, Hasmuddin M, Abdullah M M, Shkir M and Wahab M A 2013 Mater. Res. Bull. 48 3926
[65] Kandasamy A, Mohan R, Caroline M L and Vasudevan S 2008 Cryst. Res. Technol. 43 186
[66] Hatton B D, Landskron K, Hunks W J, Bennett M R, Shukaris D, Perovic D D and Ozin G A 2006 Mater. Today 9 22
[67] Miller R C 1964 Appl. Phys. Lett. 5 17
[68] Jazbinsek M, Mutter L and Gunter P 2008 IEEE J. Sel. Top. Quantum Electron. 14 1298
[69] Anis M, Muley G G, Pahurkar V G, Baig M I and Dagdale S R 2018 Mater. Res. Innov. 22 99
[70] Jiang M H and Fang Q 1999 Adv Mater. 11 1147
[71] Baig M I, Anis M and Muley G G 2017 Opt. Mater. 72 1
[72] RamtekeS P, Anis M, Baig M I and Muley G G 2018 Optik 154 275
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[3] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[4] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[5] Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军). Chin. Phys. B, 2021, 30(10): 108101.
[6] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[9] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[10] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[11] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[12] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[13] Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(12): 128103.
[14] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[15] MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser
Meng-Li Liu(刘孟丽), Yu-Yi OuYang(欧阳毓一), Huan-Ran Hou(侯焕然), Ming Lei(雷鸣), Wen-Jun Liu(刘文军), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 084211.
No Suggested Reading articles found!