Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047306    DOI: 10.1088/1674-1056/27/4/047306
Special Issue: TOPICAL REVIEW — Recent advances in thermoelectric materials and devices
TOPIC REVIEW—Recent advances in thermoelectric materials and devices Prev   Next  

Strategies for optimizing the thermoelectricity of PbTe alloys

Jinze Zhai(翟近泽), Teng Wang(王腾), Hongchao Wang(王洪超), Wenbin Su(苏文斌), Xue Wang(王雪), Tingting Chen(陈婷婷), Chunlei Wang(王春雷)
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  

The thermoelectric materials have been considered as a potential candidate for the new power generation technology based on their reversible heat and electricity conversion. Lead telluride (PbTe) is regarded as an excellent mid-temperature thermoelectric material due to its suitable intrinsic thermoelectric properties. So tremendous efforts have been done to improve the thermoelectric performance of PbTe, and figures of merit, zT > 2.0, have been reported. Main strategies for optimizing the thermoelectric performance have been focused as the main line of this review. The band engineering and phonon scattering engineering as two main effective strategies are systemically summarized here. The band engineering, like band convergence, resonant levels, and band flatting have been addressed in improving the power factor. Additionally, phonon scattering engineerings, such as atomic-scale, nano-scale, meso-scale, and multi-scale phonon scatterings have been applied to reduce the thermal conductivity. Besides, some successful synergistic effects based on band engineerings and phonon scatterings are illustrated as a simultaneous way to optimize both the power factor and thermal conductivity. Summarizing the above three main parts, we point out that the synergistic effects should be effectively exploited, and these may further boost the thermoelectric performance of PbTe alloys and can be extended to other thermoelectric materials.

Keywords:  thermoelectric PbTe alloys      band engineering      phonon scattering      synergistic effects  
Received:  20 October 2017      Revised:  06 March 2018      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632506), the National Natural Science Foundation of China (Grant Nos. 51501105, 51672159, and 51611540342), the Young Scholars Program of Shandong University (Grant No. 2015WLJH21), the China Postdoctoral Science Foundation (Grant Nos. 2015M580588 and 2016T90631), the Postdoctoral Innovation Foundation of Shandong Province, China (Grant No. 201603027), the Fundamental Research Funds of Shandong University (Grant No. 2015TB019), and the Foundation of the State Key Laboratory of Metastable Materials Science and Technology (Grant No. 201703).

Corresponding Authors:  Hongchao Wang, Chunlei Wang     E-mail:  wanghc@sdu.edu.cn;wangcl@sdu.edu.cn

Cite this article: 

Jinze Zhai(翟近泽), Teng Wang(王腾), Hongchao Wang(王洪超), Wenbin Su(苏文斌), Xue Wang(王雪), Tingting Chen(陈婷婷), Chunlei Wang(王春雷) Strategies for optimizing the thermoelectricity of PbTe alloys 2018 Chin. Phys. B 27 047306

[1] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884
[2] Chu S, Cui Y and Liu N 2017 Nat. Mater. 16 16
[3] Shi X and Chen L 2016 Nat. Mater. 15 691
[4] Bell L E 2008 Science 321 1457
[5] Hu L P, Zhu T J, Wang Y G, Xie H H, Xu Z J and Zhao X B 2014 NPG Asia Materials 6 e88
[6] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, DravidV P and Kanatzidis M G 2012 Nature 489 414
[7] Lu Y, Li K Y, Zhong X L, Huang Y and Shao X H 2018 Chin. Phys. B 27 026103
[8] Bulat L P, Osvenskii V B and Pshenay-Severin D A 2015 Mater. Today: Proceedings 2 532
[9] Crocker A and Rogers L M 1967 British J. Appl. Phys. 18 563
[10] Kanatzidis M G 2009 Chem. Mater. 22 648
[11] Crocker A and Rogers L 1968 Le Journal de Physique Colloques 29 C4
[12] Pei Y, LaLonde A, Iwanaga S and Snyder G J 2011 Energy Environ. Sci. 4 2085
[13] Nemov S and Ravich Y I 1998 Physics-Uspekhi 41 735
[14] Pei Y, Wang H, Gibbs Z M, LaLonde A D and Snyder G J 2012 NPG Asia Materials 4 e28
[15] Wang H, Hwang J, Snedaker M L, Kim I h, Kang C, Kim J, Stucky GD, Bowers J and Kim W 2015 Chem. Mater. 27 944
[16] Wang H, Bahk J H, Kang C, Hwang J, Kim K, Kim J, Burke P, BowersJ E, Gossard A C, Shakouri A and Kim W 2014 Proc. Nat. Acad. Sci. USA 111 10949
[17] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[18] Pei Y, LaLonde A D, Wang H and Snyder G J 2012 Energy Environ. Sci. 5 7963
[19] Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510
[20] Dashevsky Z, Shusterman S, Dariel M P and Drabkin I 2002 J. Appl. Phys. 92 1425
[21] König J D, Nielsen M D, Gao Y B, Winkler M, Jacquot A, Bötner H and Heremans J P 2011 Phys. Rev. B 83 205126
[22] Chen Z G, Han G, Yang L, Cheng L and Zou J 2012 Prog. Nat. Sci.: Materials International 22 535
[23] Pichanusakorn P and Bandaru P 2010 Mater. Sci. Eng.:R:Reports 67 19
[24] Koh Y K, Vineis C, Calawa S, Walsh M and Cahill D G 2015 J. Am. Chem. Soc. 137 5100
[25] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[26] Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, HuangM, Snyder G J and Pei Y 2017 Adv. Mater. 29 1606768
[27] Pei Y, LaLonde A D, Heinz N A and Snyder G J 2012 Adv. Energy Mater. 2 670
[28] Pei Y, LaLonde A D, Heinz N A, Shi X, Iwanaga S, Wang H, Chen Land Snyder G J 2011 Adv. Mater. 23 5674
[29] Tan G, Shi F, Hao S, Zhao L, Chi H, Zhang X, Uher C, Wolverton C,Dravid V and Kanatzidis M 2016 Nat. Commun. 7 12167
[30] Fu L, Yin M, Wu D, Li W, Feng D, Huang L and He J 2017 Energy Environ. Sci. 10 2030
[31] Pei Y, Lensch-Falk J, Toberer E S, Medlin D L and Snyder G J 2011 Adv. Funct. Mater. 21 241
[32] Zhang Q, Chere E K, Wang Y, Kim H S, He R, Cao F, Dahal K, BroidoD, Chen G and Ren Z 2016 Nano Energy 22 572
[33] Bhandari C and Rowe D 1983 J. Phys. D:Appl. Phys. 16 L75
[34] Kang C C, Yamauchi K A, Vlassakis J, Sinkala E, Duncombe T A andHerr A E 2016 Nat. Protoc. 11 1508
[35] Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510
[36] Jaworski C M, Wiendlocha B, Jovovic V and Heremans J P 2011 Energy Environ. Sci. 4 4155
[37] Nielsen M, Levin E, Jaworski C, Schmidt-Rohr K and Heremans J 2012 Phys. Rev. B 85 045110
[38] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K,Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[39] Zhang Q Y, Wang H, Liu W S, Wang H Z, Yu B, Zhang Q, Tian Z T,Ni G, Lee S, Esfarjani K, Chen G and Ren Z F 2012 Energy Environ. Sci. 5 5510
[40] Wang H C, Hwang J, Zhang C, et al. 2017 J. Mater. Chem. A 5 14165
[41] Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, BroidoD, Chen G and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261
[42] Tan G, Shi F, Hao S, Chi H, Zhao L D, Uher C, Wolverton C, Dravid VP and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 5100
[43] Jaworski C M, Kulbachinskii V and Heremans J P 2009 J. Electron. Mater. 38 1956
[44] Allgaier R 1961 J. Appl. Phys. 32 2185
[45] Hoang K, Mahanti S and Kanatzidis M G 2009 Phys. Rev. B 80 115106
[46] Tsang Y W and Cohen M L 1971 Phys. Rev. B 3 1254
[47] Zaitsev V, Fedorov M, Gurieva E, Eremin I, Konstantinov P, SamuninA Y and Vedernikov M 2006 Phys. Rev. B 74 045207
[48] Wang H, Hwang J, Zhang C, Wang T, Su W, Kim H, Kim J, Zhai J,Wang X and Park H 2017 J. Mater. Chem. A 5 14165
[49] Qiu B, Bao H, Zhang G, Wu Y and Ruan X 2012 Comput. Mater. Sci. 53 278
[50] Fu L, Yin M, Wu D, Li W, Feng D, Huang L and He J 2017 Energy Environ. Sci. 10 2030
[51] Lo S H, He J, Biswas K, Kanatzidis M G and Dravid V P 2012 Adv. Funct. Mater. 22 5175
[52] Wang H, Charoenphakdee A, Kurosaki K, Yamanaka S and Snyder GJ 2011 Phys. Rev. B 83 024303
[53] Fu T, Yue X, Wu H, Fu C, Zhu T, Liu X, Hu L, Ying P, He J and ZhaoX 2016 Journal of Materiomics 2 141
[54] Kuo C H, Jeng M S, Ku J R, Wu S K, Chou Y W and Hwang C S 2009 J. Electron. Mater. 38 1956
[55] Dong J, Liu W, Li H, Su X, Tang X and Uher C 2013 J. Mater. Chem. A 1 12503
[56] Androulakis J, Lin C H, Kong H J, Uher C, Wu C I, Hogan T, CookB A, Caillat T, Paraskevopoulos K M and Kanatzidis M G 2007 J. Am. Chem. Soc. 129 9780
[57] Kim W and Majumdar A 2006 J. Appl. Phys. 99 084306
[58] Kanatzidis M G 2010 Chem. Mater. 22 648
[59] Lan Y, Minnich A J, Chen G and Ren Z 2010 Adv. Funct. Mater. 20 357
[60] Sootsman J R, Pcionek R J, Kong H, Uher C and Kanatzidis M G 2006 Chem. Mater. 18 4993
[61] He J, Kanatzidis M G and Dravid V P 2013 Mater. Today 16 166
[62] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P and KanatzidisM G 2011 Nat. Chem. 3 160
[63] Ahn K, Biswas K, He J, Chung I, Dravid V and Kanatzidis M G 2013 Energy Environ. Sci. 6 1529
[64] Ohta M, Biswas K, Lo S-H, He J, Chung D Y, Dravid V P andKanatzidis M G 2012 Adv. Energy Mater. 2 1117
[65] Girard S N, Schmidt-Rohr K, Chasapis T C, Hatzikraniotis E, NjegicB, Levin E M, Rawal A, Paraskevopoulos K M and Kanatzidis M G 2013 Adv. Funct. Mater. 23 747
[66] Girard S N, He J, Li C, Moses S, Wang G, Uher C, Dravid V P andKanatzidis M G 2010 Nano Lett. 10 2825
[67] He J, Blum I D, Wang H Q, Girard S N, Doak J, Zhao L D, Zheng J C,Casillas G, Wolverton C, Jose-Yacaman M, Seidman D N, KanatzidisM G and Dravid V P 2012 Nano Lett. 12 5979
[68] Girard S N, He J, Zhou X, Shoemaker D, Jaworski C M, Uher C, DravidV P, Heremans J P and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 16588
[69] Zhang J, Wu D, He D, Feng D, Yin M, Qin X and He J 2017 Adv. Mater. 29 1703148
[70] Zhang K, Zhang Q, Wang L, Jiang W and Chen L 2017 J. Alloys Compd. 725 563
[71] He J, Girard S N, Zheng J C, Zhao L, Kanatzidis M G and Dravid V P 2012 Adv. Mater. 24 4440
[72] Tan G, Shi F, Doak J W, Sun H, Zhao L-D, Wang P, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 Energy Environ. Sci. 8 267
[73] Lee Y, Lo S H, Androulakis J, Wu C I, Zhao L D, Chung D Y, Hogan T P, Dravid V P and Kanatzidis M G 2013 J. Am. Chem. Soc. 135 5152
[74] Zhao L D, Hao S, Lo S H, Wu C I, Zhou X, Lee Y, Li H, Biswas K, Hogan T P, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2013 J. Am. Chem. Soc. 135 7364
[75] Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis M G and He J Q 2014 Nat. Commun. 5 4515
[76] Mahan G and Sofo J 1996 Proc. Natl. Acad. Sci. 93 7436
[77] Bahk J H, Bian Z and Shakouri A 2012 Phys. Rev. B 86 075204
[78] Martin J, Wang L, Chen L and Nolas G S 2009 Phys. Rev. B 79 115311
[79] Faleev S V and Lónard F 2008 Phys. Rev. B 77 214304
[80] Kishimoto K and Koyanagi T 2002 J. Appl. Phys. 92 2544
[81] Sootsman J R, Kong H, Uher C, D'Angelo J J, Wu C I, Hogan T P, Caillat T and Kanatzidis M G 2008 Angewandte Chemie 47 8618
[82] Kang C C, Yamauchi K A, Vlassakis J, Sinkala E, Duncombe T A and Herr A E 2016 Nat. Protocols 11 1508
[83] Pei Y, Heinz N A, LaLonde A and Snyder G J 2011 Energy Environ. Sci. 4 3640
[84] Zhao L D, Wu H J, Hao S Q, Wu C I, Zhou X Y, Biswas K, He J Q, Hogan T P, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2013 Energy Environ. Sci. 6 3346
[85] Korkosz R J, Chasapis T C, Lo S H, Doak J W, Kim Y J, Wu C I, Hatzikraniotis E, Hogan T P, Seidman D N, Wolverton C, Dravid V P and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 3225
[86] Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G and He J 2015 Energy Environmental Science 8 2056
[87] Tan G, Stoumpos C C, Wang S, Bailey T P, Zhao L D, Uher C and Kanatzidis M G 2017 Adv. Energy Mater. 7 1700099
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[3] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[4] Band engineering of honeycomb monolayer CuSe via atomic modification
Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(10): 106807.
[5] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[6] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[7] Enhanced thermoelectric performance through homogenously dispersed MnTe nanoparticles in p-type Bi0.52Sb1.48Te3 nanocomposites
Tian-Qi Lu(陆天奇), Peng-Fei Nan(南鹏飞), Si-Long Song(宋思龙), Xin-Yue Zhu(朱欣悦), Huai-Zhou Zhao(赵怀周), Yuan Deng(邓元). Chin. Phys. B, 2018, 27(4): 047207.
[8] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[9] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[10] Tuning the thermal conductivity of strontium titanate through annealing treatments
Liang Zhang(张喨), Ning Li(李宁), Hui-Qiong Wang(王惠琼), Yufeng Zhang(张宇锋), Fei Ren(任飞), Xia-Xia Liao(廖霞霞), Ya-Ping Li(李亚平), Xiao-Dan Wang(王小丹), Zheng Huang(黄政), Yang Dai(戴扬), Hao Yan(鄢浩), Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2017, 26(1): 016602.
[11] Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
Zhi Jiang(蒋 智), Yi-Qi Zhuang(庄奕琪), Cong Li(李 聪), Ping Wang(王 萍), Yu-Qi Liu(刘予琪). Chin. Phys. B, 2016, 25(2): 027701.
[12] Theory of phonon-modulated electron spin relaxation time based on the projection–reduction method
Nam Lyong Kang, Sang Don Choi. Chin. Phys. B, 2014, 23(8): 087102.
[13] Polarized spin transport in mesoscopic quantum rings with electron--phonon and Rashba spin--orbit coupling
Liu Ping(刘平) and Xiong Shi-Jie(熊诗杰). Chin. Phys. B, 2009, 18(12): 5414-5419.
[14] Existence of the transverse relaxation time in optically excited bulk semiconductors
Zhang Hai-Chao (张海潮), Lin Wei-Zhu (林位株), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2006, 15(4): 735-749.
[15] Effect of phonon scattering mechanisms on the lattice thermal conductivity of skutterudite-related compound
Yang Lei (杨磊), Wu Jian-Sheng (吴建生), Zhang Lan-Ting (张澜庭). Chin. Phys. B, 2004, 13(4): 516-521.
No Suggested Reading articles found!