Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016602    DOI: 10.1088/1674-1056/26/1/016602
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tuning the thermal conductivity of strontium titanate through annealing treatments

Liang Zhang(张喨)1, Ning Li(李宁)1, Hui-Qiong Wang(王惠琼)1,3, Yufeng Zhang(张宇锋)1, Fei Ren(任飞)1, Xia-Xia Liao(廖霞霞)1, Ya-Ping Li(李亚平)1, Xiao-Dan Wang(王小丹)1, Zheng Huang(黄政)1, Yang Dai(戴扬)4, Hao Yan(鄢浩)4, Jin-Cheng Zheng(郑金成)1,2,3
1. Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China;
2. Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen 361005, China;
3. Xiamen University Malaysia, Sepang, Selangor 439000, Malaysia;
4. Department of Chemical Engineering,~School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Abstract  Strontium titanate (SrTiO3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical power through thermoelectric effect. This work shows that the thermal conductivity of SrTiO3 can be effectively reduced by annealing treatments, through an integrated study of laser flash measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray absorption fine structure, and first-principles calculations. A phonon scattering model is proposed to explain the reduction of thermal conductivity after annealing. This work suggests a promising means to characterize and optimize the material for thermoelectric applications.
Keywords:  thermal conductivity      SrTiO3      annealing      phonon scattering  
Received:  05 May 2016      Revised:  02 September 2016      Accepted manuscript online: 
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  63.20.K- (Phonon interactions)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332105, 51475396, 11335006, 21103109, 21176152, and 21373137), the Natural Science Foundation of Fujian Province of China (Grant No. 2013J01026), and the Fundamental Research Funds for Central Universities of China (Grant Nos. 2013121012, 20720140517, 20720160013, and 20720160020).
Corresponding Authors:  Hui-Qiong Wang, Jin-Cheng Zheng     E-mail:  hqwang@xmu.edu.cn;jczheng@xmu.edu.cn

Cite this article: 

Liang Zhang(张喨), Ning Li(李宁), Hui-Qiong Wang(王惠琼), Yufeng Zhang(张宇锋), Fei Ren(任飞), Xia-Xia Liao(廖霞霞), Ya-Ping Li(李亚平), Xiao-Dan Wang(王小丹), Zheng Huang(黄政), Yang Dai(戴扬), Hao Yan(鄢浩), Jin-Cheng Zheng(郑金成) Tuning the thermal conductivity of strontium titanate through annealing treatments 2017 Chin. Phys. B 26 016602

[1] DiSalvo F J 1999 Science 285 703
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Zheng J C 2008 Front. Phys. China 3 269
[4] Fan Z, Zheng J, Wang H Q and Zheng J C 2012 Nanoscale Res. Lett. 7 570
[5] He J, Zhao L D, Zheng J C, Doak J, Wu H, Wang H Q, Lee Y, Wolverton C, Kanatzidis M G and Dravid V P 2013 J. Am. Chem. Soc. 135 4624
[6] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106
[7] Ravichandran J, Siemons W, Oh D W, Kardel J T, Chari A, Heijmerikx H, Scullin M L, Majumdar A, Ramesh R and Cahill D G, 2010 Phys. Rev. B 82 165126
[8] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[9] Okuda T, Nakanishi K, Miyasaka S and Tokura Y 2001 Phys. Rev. B 63 113104
[10] Foley B M, Brown-Shaklee H J, Duda J C, Cheaito R, Gibbons B J, Medlin D, Ihlefeld J F and Hopkins P E 2012 Appl. Phys. Lett. 101 231908
[11] Bhattacharya S, Dehkordi A M, Tennakoon S, Adebisi R, Gladden J R, Darroudi T, Alshareef H N and Tritt T M 2014 J. Appl. Phys. 115 223712
[12] Popuri S R, Scott A J M, Downie R A, Hall M A, Suard E, Decourt R, Pollet M and Bos J W G 2014 RSC adv. 4 33720
[13] Muta M, Kurosaki K and Yamanaka S 2005 J. Alloy. Comp. 392 306
[14] Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911
[15] Li F, Chen J W, Chen J H, et al. 2015 Acta Phys. Sin. 64 198801(in Chinese)
[16] Yu H S, Xia H L, Hu W, et al. 2015 Acta Phys. Sin. 64 217402(in Chinese)
[17] Zhu Hui-Long, Luo Wei-Chun, Wang Yan-Rong, et al. 2015 Chin. Phys. B 24 117306
[18] Wang T, Cheng Y, Sun Y J, et al. 2015 Chin. Phys. B 24 107303
[19] Qiu R, Gao X, Jiang Y, et al. 2016 Acta Phys. Sin. 65 044209(in Chinese)
[20] Parker W J, Jenkins R J, Butler C P and Abbott G L 1961 J. Appl. Phys. 32 1679
[21] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria
[22] Sjöstedt E, Nordstrom L and Singh D J 2000 Solid State Commun. 114 15
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Perry C H, Khanna B N and Ruppecht G 1964 Phys. Rev. 135 408
[25] Gervais F, Servoin J L, Baratoff A, Bednorz J G and Bining G 1993 Phys. Rev. B 47 8187
[26] de Groot F M F, Faber J, Michiels J J M, Czyzyk M T, Abbate M and Fuggle J C 1993 Phys. Rev. B 48 2074
[27] Muller D A, Nakagawa N, Ohtomo A, Grazul J L and Hwang H Y 2004 Nature 430 657
[28] Browning N D, Moltaji H O and Buban J P 1998 Phys. Rev. B 58 8289
[29] Lusvardi V S, Barteau M A, Chen J G, Eng Jr. J, Frühberger J and Teplyakov A 1998 Surf. Sci. 397 237
[30] Liao X X, Wang H Q and Zheng J C 2013 J. Am. Ceram. Soc. 96 538
[31] Szot K, Specier W, Carius R, Zastrow U and Beyer W 2002 Phys. Rev. Lett. 88 075508
[32] Callaway J 1959 Phys. Rev. 113 1046
[33] Callaway J 1960 Phys. Rev. 120 1149
[34] Zou J, Kotchetkov D, Balandin A A, Florescu D I and Pollak F H 2002 J. Appl. Phys. 92 2534
[35] Klemens P G 1955 Proc. Phys. Soc. London A 68 1113
[36] Abeles B 1963 Phys. Rev. 131 1906
[37] He J Q, Girard S N, Zheng J C, Zhao L D, Kanatzidis M G and Dravid V P 2012 Adv. Mater. 24 4440
[38] Hao R, Lin W Q, Zheng J C and Lu M 2014 Int. J. Adhesion and Adhesives 49 58
[39] Zheng J C, Zhang L, Kretinin A V, Morozov S V, Wang Y B, Wang T, Li X, Ren F, Zhang J, Lu C Y, Chen J C, Lu M, Wang H Q, Geim A K and Novoselov K S 2016 2D Materials 3 011004
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[7] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[10] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[11] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[12] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[13] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
No Suggested Reading articles found!