CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Tuning the thermal conductivity of strontium titanate through annealing treatments |
Liang Zhang(张喨)1, Ning Li(李宁)1, Hui-Qiong Wang(王惠琼)1,3, Yufeng Zhang(张宇锋)1, Fei Ren(任飞)1, Xia-Xia Liao(廖霞霞)1, Ya-Ping Li(李亚平)1, Xiao-Dan Wang(王小丹)1, Zheng Huang(黄政)1, Yang Dai(戴扬)4, Hao Yan(鄢浩)4, Jin-Cheng Zheng(郑金成)1,2,3 |
1. Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China; 2. Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen 361005, China; 3. Xiamen University Malaysia, Sepang, Selangor 439000, Malaysia; 4. Department of Chemical Engineering,~School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China |
|
|
Abstract Strontium titanate (SrTiO3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical power through thermoelectric effect. This work shows that the thermal conductivity of SrTiO3 can be effectively reduced by annealing treatments, through an integrated study of laser flash measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray absorption fine structure, and first-principles calculations. A phonon scattering model is proposed to explain the reduction of thermal conductivity after annealing. This work suggests a promising means to characterize and optimize the material for thermoelectric applications.
|
Received: 05 May 2016
Revised: 02 September 2016
Accepted manuscript online:
|
PACS:
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
63.20.K-
|
(Phonon interactions)
|
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332105, 51475396, 11335006, 21103109, 21176152, and 21373137), the Natural Science Foundation of Fujian Province of China (Grant No. 2013J01026), and the Fundamental Research Funds for Central Universities of China (Grant Nos. 2013121012, 20720140517, 20720160013, and 20720160020). |
Corresponding Authors:
Hui-Qiong Wang, Jin-Cheng Zheng
E-mail: hqwang@xmu.edu.cn;jczheng@xmu.edu.cn
|
Cite this article:
Liang Zhang(张喨), Ning Li(李宁), Hui-Qiong Wang(王惠琼), Yufeng Zhang(张宇锋), Fei Ren(任飞), Xia-Xia Liao(廖霞霞), Ya-Ping Li(李亚平), Xiao-Dan Wang(王小丹), Zheng Huang(黄政), Yang Dai(戴扬), Hao Yan(鄢浩), Jin-Cheng Zheng(郑金成) Tuning the thermal conductivity of strontium titanate through annealing treatments 2017 Chin. Phys. B 26 016602
|
[1] |
DiSalvo F J 1999 Science 285 703
|
[2] |
Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
|
[3] |
Zheng J C 2008 Front. Phys. China 3 269
|
[4] |
Fan Z, Zheng J, Wang H Q and Zheng J C 2012 Nanoscale Res. Lett. 7 570
|
[5] |
He J, Zhao L D, Zheng J C, Doak J, Wu H, Wang H Q, Lee Y, Wolverton C, Kanatzidis M G and Dravid V P 2013 J. Am. Chem. Soc. 135 4624
|
[6] |
Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106
|
[7] |
Ravichandran J, Siemons W, Oh D W, Kardel J T, Chari A, Heijmerikx H, Scullin M L, Majumdar A, Ramesh R and Cahill D G, 2010 Phys. Rev. B 82 165126
|
[8] |
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
|
[9] |
Okuda T, Nakanishi K, Miyasaka S and Tokura Y 2001 Phys. Rev. B 63 113104
|
[10] |
Foley B M, Brown-Shaklee H J, Duda J C, Cheaito R, Gibbons B J, Medlin D, Ihlefeld J F and Hopkins P E 2012 Appl. Phys. Lett. 101 231908
|
[11] |
Bhattacharya S, Dehkordi A M, Tennakoon S, Adebisi R, Gladden J R, Darroudi T, Alshareef H N and Tritt T M 2014 J. Appl. Phys. 115 223712
|
[12] |
Popuri S R, Scott A J M, Downie R A, Hall M A, Suard E, Decourt R, Pollet M and Bos J W G 2014 RSC adv. 4 33720
|
[13] |
Muta M, Kurosaki K and Yamanaka S 2005 J. Alloy. Comp. 392 306
|
[14] |
Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911
|
[15] |
Li F, Chen J W, Chen J H, et al. 2015 Acta Phys. Sin. 64 198801(in Chinese)
|
[16] |
Yu H S, Xia H L, Hu W, et al. 2015 Acta Phys. Sin. 64 217402(in Chinese)
|
[17] |
Zhu Hui-Long, Luo Wei-Chun, Wang Yan-Rong, et al. 2015 Chin. Phys. B 24 117306
|
[18] |
Wang T, Cheng Y, Sun Y J, et al. 2015 Chin. Phys. B 24 107303
|
[19] |
Qiu R, Gao X, Jiang Y, et al. 2016 Acta Phys. Sin. 65 044209(in Chinese)
|
[20] |
Parker W J, Jenkins R J, Butler C P and Abbott G L 1961 J. Appl. Phys. 32 1679
|
[21] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria
|
[22] |
Sjöstedt E, Nordstrom L and Singh D J 2000 Solid State Commun. 114 15
|
[23] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[24] |
Perry C H, Khanna B N and Ruppecht G 1964 Phys. Rev. 135 408
|
[25] |
Gervais F, Servoin J L, Baratoff A, Bednorz J G and Bining G 1993 Phys. Rev. B 47 8187
|
[26] |
de Groot F M F, Faber J, Michiels J J M, Czyzyk M T, Abbate M and Fuggle J C 1993 Phys. Rev. B 48 2074
|
[27] |
Muller D A, Nakagawa N, Ohtomo A, Grazul J L and Hwang H Y 2004 Nature 430 657
|
[28] |
Browning N D, Moltaji H O and Buban J P 1998 Phys. Rev. B 58 8289
|
[29] |
Lusvardi V S, Barteau M A, Chen J G, Eng Jr. J, Frühberger J and Teplyakov A 1998 Surf. Sci. 397 237
|
[30] |
Liao X X, Wang H Q and Zheng J C 2013 J. Am. Ceram. Soc. 96 538
|
[31] |
Szot K, Specier W, Carius R, Zastrow U and Beyer W 2002 Phys. Rev. Lett. 88 075508
|
[32] |
Callaway J 1959 Phys. Rev. 113 1046
|
[33] |
Callaway J 1960 Phys. Rev. 120 1149
|
[34] |
Zou J, Kotchetkov D, Balandin A A, Florescu D I and Pollak F H 2002 J. Appl. Phys. 92 2534
|
[35] |
Klemens P G 1955 Proc. Phys. Soc. London A 68 1113
|
[36] |
Abeles B 1963 Phys. Rev. 131 1906
|
[37] |
He J Q, Girard S N, Zheng J C, Zhao L D, Kanatzidis M G and Dravid V P 2012 Adv. Mater. 24 4440
|
[38] |
Hao R, Lin W Q, Zheng J C and Lu M 2014 Int. J. Adhesion and Adhesives 49 58
|
[39] |
Zheng J C, Zhang L, Kretinin A V, Morozov S V, Wang Y B, Wang T, Li X, Ren F, Zhang J, Lu C Y, Chen J C, Lu M, Wang H Q, Geim A K and Novoselov K S 2016 2D Materials 3 011004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|