Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120701    DOI: 10.1088/1674-1056/ac05af
GENERAL Prev   Next  

A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines

Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏)
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide (GCPW) power combiner using a 50 μm-thick InP process. The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines, which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area. According to the results obtained, for the frequency range of 210-250 GHz, the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and 1.35 dB, respectively, and the in-band return losses were better than 11 dB. Moreover, the proposed on-chip GCPW-based combiners achieved a compromise in low-loss, broadband, and small-size, which can find wide applications in terahertz bands, such as power amplifiers and signal distribution networks.
Keywords:  coupled-GCPW      InP technology      terahertz monolithic integrated circuits (TMICs)      Wilkinson power combiner  
Received:  28 January 2021      Revised:  24 March 2021      Accepted manuscript online:  27 May 2021
PACS:  07.50.-e (Electrical and electronic instruments and components)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  84.40.Lj (Microwave integrated electronics)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 61871072).
Corresponding Authors:  Yong Zhang     E-mail:  yongzhang@uestc.edu.cn

Cite this article: 

Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏) A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines 2021 Chin. Phys. B 30 120701

[1] Urteaga M, Griffith Z, Seo M, Hacker J and Rodwell M J W 2017 Proc. IEEE 105 1051
[2] Qi L W, Meng J, Liu X Y, Weng Y, Liu Z C, Zhang D H, Zhou J T and Jin Z 2020 Chin. Phys. B 29 104212
[3] Li O P, Zhang Y, Xu R M, Cheng W, Wang Y, Niu B and Lu H Y 2016 Chin. Phys. B 25 058401
[4] Kim J, Jeon S, Kim M, Urteaga M and Jeong J 2015 IEEE Trans. Terahertz Sci. Technol. 5 215
[5] Diebold S, Wagner S, Massler H, Pahl P, Leuther A, Tessmann A, Zwick T and Kallfass I 2015 IEEE Trans. Microw. Theory Technol. 63 999
[6] Lok L B, Hwang C J, Chong H M H, Elgaid K and Thayne I G 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, September 15-19, 2008, Pasadena, USA, p.1
[7] Li X, Zhang Y, Zhang T D, Lu H Y, Cheng W and Xu R M 2017 IEICE Electron. Express 14 20170684
[8] Tang X P, Yang Z Q, Shi Z J and Lan F 2016 Chin. Phys. Lett. 33 088401
[9] AmadoRey B, CamposRoca Y, Friesicke C, VanRaay F, Massler H, Leuther A and Ambacher O 2018 11th German Microwave Conference (GeMiC), March 1-4, 2018, Freiburg, Germany, p. 327
[10] Reed T B, Rodwell M J W, Griffith Z, Rowell P, Field M and Urteaga M 2012 IEEE/MTT-S International Microwave Symposium Digest, June 17-22, 2012, Montreal, Canada, p. 1
[11] Griffith Z, Reed T, Rodwell M and Field M 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), June 27, 2013, Seattle, USA, p. 1
[12] Chen Y P, Zhang Y, Sun Y, Li O P, Lu H Y, Cheng W and Xu R M 2019 IEEE Microw. Wirel. Compon. Lett. 29 225
[13] Hettak K, Morin G A and Stubbs M G 2005 IEEE Trans. Microw. Theory Technol. 53 1624
[14] Kuo C Y, Chen A Y, Li C and Luo C H 2012 IEEE Microw. Wirel. Compon. Lett. 22 627
[15] Chen Y, Zhang Y, Sun Y, Cheng W, Lu H and Xu R M 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 7-11, 2018, Chengdu, China, p. 1
[16] Fan L and Chang K 1996 IEEE MTT-S International Microwave Symposium Digest June 17-21,1996, San Francisco, USA, p. 781
[17] Ozgur M, Zaghloul M E and Gaitan M 2000 IEEE Microw. Guided Wave Lett. 10 99
[18] Cheng K M 1996 IEEE Trans. Microw. Theory Technol. 44 636
[19] Hilberg W 1969 IEEE Trans. Microw. Theory Technol. 17 259
[1] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[2] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[3] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[4] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[5] Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator
Cai Jin-Chi (蔡金赤), Hu Lin-Lin (胡林林), Ma Guo-Wu (马国武), Chen Hong-Bin (陈洪斌), Jin Xiao (金晓), Chen Huai-Bi (陈怀璧). Chin. Phys. B, 2015, 24(6): 060701.
[6] A new method of detecting interferogram in differential phase-contrast imaging system based on special structured x-ray scintillator screen
Liu Xin(刘鑫), Guo Jin-Chuan(郭金川), and Niu Han-Ben(牛憨笨). Chin. Phys. B, 2010, 19(7): 070701.
[7] Numeral eddy current sensor modelling based on genetic neural network
Yu A-Long(俞阿龙) . Chin. Phys. B, 2008, 17(3): 878-882.
No Suggested Reading articles found!