Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 043103    DOI: 10.1088/1674-1056/27/4/043103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional theory study of structural stability for gas hydrate

Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤)
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
Abstract  

Using the first-principles method based on the density functional theory (DFT), the structures and electronic properties of different gas hydrates (CO2, CO, CH4, and H2) are investigated within the generalized gradient approximation. The structural stability of methane hydrate is studied in this paper. The results show that the carbon dioxide hydrate is more stable than the other three gas hydrates and its binding energy is -2.36 eV, and that the hydrogen hydrate is less stable and the binding energy is -0.36 eV. Water cages experience repulsion from inner gas molecules, which makes the hydrate structure more stable. Comparing the electronic properties of two kinds of water cages, the energy region of the hydrate with methane is low and the peak is close to the left, indicating that the existence of methane increases the stability of the hydrate structure. Comparing the methane molecule in water cages and a single methane molecule, the energy of electron distribution area of the former is low, showing that the filling of methane enhances the stability of hydrate structure.

Keywords:  first principles      gas hydrate      binding energy      stability  
Received:  06 December 2017      Revised:  23 January 2018      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0304008).

Corresponding Authors:  Yi-Long Qiu     E-mail:  qiuyl0328@foxmail.com

Cite this article: 

Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤) Density functional theory study of structural stability for gas hydrate 2018 Chin. Phys. B 27 043103

[1] Zhao Y S, Xu H W and Yu X H 2009 Physics 38 92(in Chinese)
[2] Guo P, Pan Y K, Li L L and Tang B 2017 Chin. Phys. B 26 073101
[3] Du B X, Chen J M, Qian W B and Wang Y 2010 Nat. Gas Explor. Dev. 33 26
[4] Yan K F, Li X S, Chen Z Y, Li G and Li Z B 2007 Acta Phys. Sin. 56 6727(in Chinese)
[5] Erfanniya H and Izadkhah S 2016 J. Pet. Sci. Technol. 34 1964
[6] Chaka A M, Felmy A R and Qafoku O 2016 Chem. Geol. 434 1
[7] Duan X L, Ren H, Gao G H, Xu J L and Qiu X Q 2014 Petro. Technol. 43 657
[8] Tang L, Shi R, Su Y and Zhao J 2015 J. Phys. Chem. A 119 10971
[9] Song J J, Li Y P and Yang Z Y 2012 J. B. Univ. Chem. Technol. 39 36
[10] Cao X X, Su Y, Zhao J J, Liu C L and Zhou P W 2014 Acta Phys. Sin. 63 1437(in Chinese)
[11] Xu L Z 2015 "Simulation research and application study on microscopic elastic properties of natural gas hydrate", MS dissertation (Chengdu:the Southwest Petroleum University) (in Chinese)
[12] Hohenberg P and Kohn W 1964 Phys. Rev 136 B864
[13] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[14] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[15] McMullan R K and Jeffrey G A 1965 J. Chem. Phys. 42 8
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Goldfarb D 1970 Math. Comput. 24 23
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
No Suggested Reading articles found!