|
|
High-level theoretical study of the evolution of abundances and interconversion of glycine conformers |
Fan Liu(刘凡), Jing Yu(于静), Yan-Ru Huang(黄艳茹) |
College of Science, Liaoning Shihua University, Fushun 113001, China |
|
|
Abstract The relative conformer energies of glycine are evaluated by using a focal point analysis expressed as (HF →MP2 →MP3 →CCSD →CCSD(T)). The conformer abundances at various temperatures (298-500 K) are calculated based on the relative energies and Boltzmann statistical thermostatistical analysis with and without considering internal hindered rotations. A comparison between the available Raman spectrum and the electron momentum spectrum confirms that the influence of rigid-rotor hindered rotation on the conformational proportions of glycine is considerable, especially for the Ⅲp structure. The conformational interconversions are discussed. It is found that with increasing temperature, the mole fraction of Ⅱn keeps constant and Ip structure can convert into IVn and Ⅲp, leading to the decrease in the weight of Ip and the increase in the weights of IVn and Ⅲp conformers, which is in accordance with experimental observations.
|
Received: 13 November 2017
Revised: 01 February 2018
Accepted manuscript online:
|
PACS:
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
33.15.-e
|
(Properties of molecules)
|
|
33.15.Bh
|
(General molecular conformation and symmetry; stereochemistry)
|
|
31.15.xr
|
(Self-consistent-field methods)
|
|
Fund: Project supported by the Young Scientists Funds of the National Natural Science Foundation of China (Grant Nos. 11404154 and 11304136). |
Corresponding Authors:
Yan-Ru Huang
E-mail: huangganen12@sina.cn
|
Cite this article:
Fan Liu(刘凡), Jing Yu(于静), Yan-Ru Huang(黄艳茹) High-level theoretical study of the evolution of abundances and interconversion of glycine conformers 2018 Chin. Phys. B 27 043102
|
[1] |
Kasalová V, Allen W D, Schaefer Ⅲ H F, Czinki E and Császár A G 2007 J. Comput. Chem. 28 1373
|
[2] |
Császár A G 1992 J. Am. Chem. Soc. 114 9568
|
[3] |
Iijima K, Tanaka K and Onuma S 1991 J. Mol. Struct. 246 257
|
[4] |
Suenram R D and Lovas F J 1980 J. Am. Chem. Soc. 102 7180
|
[5] |
Sellers H L and Schafer L 1978 J. Am. Chem. Soc. 100 7728
|
[6] |
Suenram R D and Lovas F J 1978 J. Mol. Spectrosc. 72 372
|
[7] |
Brown R D, Godfrey P D, Storey J W V and Bassez M P 1978 J. Chem. Soc. Chem. Commun. 547-548
|
[8] |
Schäfer L, Sellers H L, Lovas F J and Suenram R D 1980 J. Am. Chem. Soc. 102 6566
|
[9] |
Godfrey P D and Brown R D 1995 J. Am. Chem. Soc. 117 2019
|
[10] |
Cannington P H and Ham N S 1983 J. Electron Spectrosc. Relat. Phenom. 32 139
|
[11] |
Zheng Y, Neville J J and Brion C E 1995 Science 270 786
|
[12] |
Neville J J, Zheng Y and Brion C E 1996 J. Am. Chem. Soc. 118 10533
|
[13] |
Reva I D, Plokhotnichenko A M and Blagoi Y P 1995 Chem. Phys. Lett. 232 141
|
[14] |
Erratum 1995 Chem. Phys. Lett. 235 617
|
[15] |
Balabin R M 2010 J. Phys. Chem. Lett. 1 20
|
[16] |
Balabin R M 2012 Phys. Chem. Chem. Phys. 14 99
|
[17] |
Hu C H, Shen M and Schaefer Ⅲ H F 1993 J. Am. Chem. Soc. 115 2923
|
[18] |
Sellers H L, Schafer L 1978 J. Am. Chem. Soc. 100 7728
|
[19] |
Schafer L, Sellers H L, Lovas F J and Suenram R D 1980 J. Am. Chem. Soc. 102 6566
|
[20] |
Stepanian S G and Adamowicz L 1998 J. Phys. Chem. A 102 1041
|
[21] |
Ramek M and Schafer L 1991 J. Mol. Struct. Theochem 235 1
|
[22] |
Ke H W and Yan Y J 2008 J. Theor. Comput. Chem. 7 889
|
[23] |
Pacios L F, Galvez O and Gomez P C 2001 J. Phys. Chem. A 105 5232
|
[24] |
Jensen J H and Gordon M S 1991 J. Am. Chem. Soc. 113 7917
|
[25] |
Balabin R M 2009 Chem. Phys. Lett. 479 195
|
[26] |
Godfrey P D, Brown R D and Rodgers F M 1996 J. Mol. Struct. 376 65
|
[27] |
Felder P, Günthard H H 1982 Chem. Phys. 71 9
|
[28] |
Ruoff R S, Klots T D, Emilsson T and Gutowsky H S 1990 J. Chem. Phys. 93 3142
|
[29] |
Huang Y R, Knippenberg S and Deleuze M S 2007 J. Phys. Chem. A 111 5879
|
[30] |
Knippenberg S, Huang Y R and Deleuze M S 2007 J. Chem. Phys. 127 174306
|
[31] |
Luo Z H, Ning C G and Deng J K 2009 J. Phys. B:At. Mol. Opt. Phys. 42 165205
|
[32] |
Allinger N L and Schaefer Ⅲ F F 1997 J. Chem. Phys. 106 5143
|
[33] |
Salam A and Deleuze M S 2002 J. Chem. Phys. 116 1296
|
[34] |
Kwasniewski S P, Claes L, Francüois J P and Deleuze M S 2003 J. Chem. Phys. 118 7823
|
[35] |
Feller D 1992 J. Chem. Phys. 96 6104
|
[36] |
Schwartz C 1984 Methods in Computational Physics (New York:Academic) p. 22
|
[37] |
Nguyen D T and Hagler A T 1997 J. Comput. Chem. 18 1609
|
[38] |
Shi L L, Liu K, Luo Z H, Ning C G and Deng J K 2011 Chin. Phys. B 20 013403
|
[39] |
Liu K, Ning C G and Deng J K 2010 Chin. Phys. Lett. 27 073403
|
[40] |
Ning C G, Zhang S F, Deng J K, Liu K, Huang Y R and Luo Z H 2008 Chin. Phys. B 17 1729
|
[41] |
Ning C G, Huang Y R, Zhang S F, Deng J K, Liu K, Luo Z H, Wang F 2008 J. Phys. Chem. A 112 11078
|
[42] |
Liu K, Ning C G, Luo Z H, Shi L L, Deng J K 2010 Chem. Phys. Lett. 497 229
|
[43] |
Colyer C J, Stevenson M A, Al-Hagan O, Madison D H, Ning C G, Lohmann B 2009 J. Phys. B:At. Mol. Opt. Phys. 42 235207
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|