Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 043104    DOI: 10.1088/1674-1056/27/4/043104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Novel potential energy surface-based quantum dynamics of ion-molecule reaction O++D2 →OD++D

Xian-Long Wang(王宪龙), Feng Gao(高峰), Shou-Bao Gao(高守宝), Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田)
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  

According to a novel electronic ground-state potential energy surface of H2O+(X4A"), we calculate the reaction probabilities and the integral cross section for the titled reaction O++D2 →OD++D by the Chebyshev wave packet propagation method. The reaction probabilities in a collision-energy range of 0.0 eV-1.0 eV show an oscillatory structure for the O++D2 reaction due to the existence of the potential well. Compared with the results of Martínez et al., the present integral cross section is large, which is in line with experimental data.

Keywords:  quantum dynamics      Chebyshev wave packet propagation      O++D2  
Received:  18 December 2017      Revised:  16 January 2018      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674198 and 11304185).

Corresponding Authors:  Qing-Tian Meng     E-mail:  qtmeng@sdnu.edu.cn

Cite this article: 

Xian-Long Wang(王宪龙), Feng Gao(高峰), Shou-Bao Gao(高守宝), Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田) Novel potential energy surface-based quantum dynamics of ion-molecule reaction O++D2 →OD++D 2018 Chin. Phys. B 27 043104

[1] Duley W W and Williams D A 1986 Interstellar Chemistry (New York:Academic press)
[2] Ng C Y 2002 J. Phys. Chem. A 106 5953
[3] Fehsenfeld F C, Schmeltekopf A L, Goldan P D, Schiff H I and Ferguson E E 1967 J. Chem. Phys. 46 2802
[4] Smith D, Adams N G and Miller T M 1978 J. Chem. Phys. 69 308
[5] Burley J D, Ervin K M and Armentrout P B 1987 Int. J. Mass Spectrom. Ion Processes 80 153
[6] Gioumousis G and Stevenson D P 1958 J. Chem. Phys. 29 294
[7] Martínez R, Millań J and Gonzaález M 2004 J. Chem. Phys. 120 4705
[8] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B:At. Mol. Opt. Phys. 42 165006
[9] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[10] Martínez R, Sierra J D, Gray S K and González M 2006 J. Chem. Phys. 125 164305
[11] Balint-Kurti G G 2004 Adv. Chem. Phys. 128 249
[12] Bulut N, Castillo J F, Jambrina P G, Klos J, Roncero O, Aoiz F J and Bañares L 2015 J. Phys. Chem. A 119 11951
[13] Song Y Z, Zhang Y, Zhang L L, Gao S B and Meng Q T 2015 Chin. Phys. B 24 063101
[14] Mandelshtam V A and Taylor H S 1995 J. Chem. Phys. 102 7390
[15] Mandelshtam V A and Taylor H S 1995 J. Chem. Phys. 103 2903
[16] Chen R Q and Guo H 1996 Chem. Phys. Lett. 261 605
[17] Chen R Q and Guo H 1996 J. Chem. Phys. 105 3569
[18] Gray S.K and Balint-Kurti G G 1998 J. Chem. Phys. 108 950
[19] Wei W, Gao S B, Sun Z P, Song Y Z and Meng Q T 2014 Chin. Phys. B 23 073101
[20] Lin S Y and Guo H 2006 J. Chem. Phys. 124 031101
[21] Sun Z P, Lin S Y and Zheng Y J 2011 J. Chem. Phys. 135 234301
[22] Tan R S, Zhai H C, Gao F, Tong D M and Lin S Y 2016 Phys. Chem. Chem. Phys. 18 15673
[23] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[24] Neuhauser D, Baer, M, Judson R S and Kouri D J 1990 J. Chem. Phys 93 312
[25] Zhang D H and Zhang J Z H 1994 J. Chem. Phys. 101 1146
[26] Lin S Y and Guo H 2003 J. Chem. Phys. 119 11602
[27] Meijer A J H M, Goldfield E M, Gray S K and Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270
[28] Althorpe S C 2001 J. Chem. Phys. 114 1601
[29] Ma G B and Guo H 1999 J. Chem. Phys. 111 4032
[30] Gao S B, Zhang J, Song Y Z and Meng Q T 2015 Eur. Phys. J. D 69 111
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[3] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[4] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[5] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[6] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[7] Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence
V N Likhachev, O I Shevaleevskii, G A Vinogradov. Chin. Phys. B, 2016, 25(1): 018708.
[8] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[9] A typical slow reaction H(2S)+S2(X3Σg-)→SH(X2∏)+S(3P) on a new surface:Quantum dynamics calculations
Wei Wei (魏巍), Gao Shou-Bao (高守宝), Sun Zhao-Peng (孙兆鹏), Song Yu-Zhi (宋玉志), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2014, 23(7): 073101.
[10] Quantum dynamic behaviour in a coupled cavities system
Peng Jun(彭俊), Wu Yun-Wen(邬云文), and Li Xiao-Juan(李小娟) . Chin. Phys. B, 2012, 21(6): 060302.
No Suggested Reading articles found!