Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038901    DOI: 10.1088/1674-1056/27/3/038901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition

Yi Ma(马毅)1,2, Eric Wai Ming Lee(李伟民)2, Meng Shi(施朦)2, Richard Kwok Kit Yuen(袁国杰)2
1 Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China;
2 Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
Abstract  Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacuee's spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacuee's spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (φ>0.5); (ii) the effect of memory is superior to that of “follow-the-crowd” under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions.
Keywords:  crowd evacuation      memory      visibility      social force model  
Received:  01 August 2017      Revised:  17 December 2017      Accepted manuscript online: 
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  89.40.-a (Transportation)  
  07.05.Tp (Computer modeling and simulation)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 11203615).
Corresponding Authors:  Yi Ma     E-mail:  yima23-c@my.cityu.edu.hk

Cite this article: 

Yi Ma(马毅), Eric Wai Ming Lee(李伟民), Meng Shi(施朦), Richard Kwok Kit Yuen(袁国杰) Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition 2018 Chin. Phys. B 27 038901

[1] Helbing D, Johansson A and Al-Abideen H Z 2007 Phys. Rev. E 75 046109
[2] Zhang J, Song W and Xu X 2008 Physica A 387 5901
[3] Saloma C, Perez G J, Tapang G, Lim M and Palmes-Saloma C 2003 Proc. Natl. Acad. Sci. USA 100 11947
[4] Lin P, Ma J, Liu T, Ran T, Si Y and Li T 2016 Physica A 452 157
[5] Garcimartín A, Pastor J M, Ferrer L M, Ramos J J, Martín-Gómez C and Zuriguel I 2015 Phys. Rev. E 91 022808
[6] Pastor J M, Garcimartín A, Gago P L, Peralta J P, Martín-Gómez C, Ferrer L M, Maza D, Parisi D R, Pugnaloni L A and Zuriguel I 2015 Phys. Rev. E 92 062817
[7] Garcimartín A, Parisi D R, Pastor J M, Martín-Gómez C and Zuriguel I 2016 J. Stat. Mech.-Theory Exp. 2016 043402
[8] Peacock R D, Hoskins B L and Kuligowski E D 2012 Safety Sci. 50 1655
[9] Helbing D and Molnar P 1995 Phys. Rev. E 51 4282
[10] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[11] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[12] Kirchner A, Nishinari K and Schadschneider A 2003 Phys. Rev. E 67 056122
[13] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[14] Kuang H, Li X, Song T and Dai S 2008 Phys. Rev. E 78 066117
[15] Liu S B, Lo S M, Ma J and Wang W L 2014 IEEE Trans. Intell. Transp. Syst. 15 992
[16] Huang H and Guo R 2008 Phys. Rev. E 78 021131
[17] Yue H, Zhang B Y, Shao C F and Xing Y 2014 Chin. Phys. B 23 050512
[18] Kuang H, Song T, Li X L and Dai S Q 2008 Chin. Phys. Lett. 25 1498
[19] Wang L, Zheng J, Zhang X, Zhang J, Wang Q and Zhang Q 2016 Chin. Phys. B 25 685
[20] Isobe M, Helbing D and Nagatani T 2004 Phys. Rev. E 69 066132
[21] Nagai R, Nagatani T, Isobe M and Adachi T 2004 Physica A 343 712
[22] Shi J, Ren A and Chen C 2009 Automat. Constr. 18 338
[23] Guo R Y, Huang H J and Wong S C 2012 Transport. Res. Part B 46 669
[24] Guo R Y and Huang H J 2012 Simulation 88 1138
[25] Xia Y, Wong S C and Shu C W 2009 Phys. Rev. E 79 066113
[26] Nguyen M H, Ho T V and Zucker J D 2013 Simul. Model. Pract. Th. 36 44
[27] Ma P and Wang B 2013 Physica A 392 215
[28] Yue H, Wang S, Jia X, Li J and Shao C 2016 Simulation 92 491
[29] Hou L, Liu J G, Pan X and Wang B H 2014 Physica A 400 93
[30] Cao S, Song W and Lv W 2016 Phys. Lett. A 380 540
[31] Fang J, El-Tawil S and Aguirre B 2016 Safety Sci. 83
[32] Low D J 2000 Nature 407 465
[33] Zeng W, Chen P, Nakamura H and Iryo-Asano M 2014 Transport. Res. Part C 40 143
[34] Zeng W, Chen P, Yu G and Wang Y 2017 Transport. Res. Part C 80 37
[35] Wang L, Zheng J H, Zhang X S, Zhang J L, Wang Q Z and Zhang Q 2016 Chin. Phys. B 25 118901
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[3] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[4] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[5] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[8] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[9] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[10] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[11] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[12] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[13] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[14] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[15] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
No Suggested Reading articles found!