Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037302    DOI: 10.1088/1674-1056/27/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Distinctive distribution of defects in CdZnTe: In ingots and their effects on the photoelectric properties

Xu Fu(符旭)1, Fang-Bao Wang(王方宝)1, Xi-Ran Zuo(左希然)1, Ze-Jian Wang(王泽剑)1, Qian-Ru Wang(王倩茹)1, Ke-Qin Wang(王柯钦)1, Ling-Yan Xu(徐凌燕)1, Ya-Dong Xu(徐亚东)1, Rong-Rong Guo(郭榕榕)1,2, Hui Yu(于晖)1, Wan-Qi Jie(介万奇)1
1 State Key Laboratory of Solidification Processing, and Ministry of Industry and Information Technology(MⅡT) Key Laboratory of Radiation Detection Materials and Devices, Northwestern Polytechnical University, Xi'an 710072, China;
2 School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
Abstract  Photoelectric properties of CdZnTe:In samples with distinctive defect distributions are investigated using various techniques. Samples cut from the head (T04) and tail (W02) regions of a crystal ingot show distinct differences in Te inclusion distribution. Obvious difference is not observed in Fourier transform infrared (FTIR) spectra, UV-Vis-NIR transmittance spectra, and I-V measurements. However, carrier mobility of the tip sample is higher than that of the tail according to the laser beam induced current (LBIC) measurements. Low temperature photoluminescence (PL) measurement presents sharp emission peaks of D0X and A0X, and relatively large peak of D0X (or A0X)/Dcomplex for T04, indicating a better crystalline quality. Thermally stimulated current (TSC) spectrum shows higher density of shallow point defects, i.e., Cd vacancies, InCd+, etc., in W02 sample, which could be responsible for the deterioration of electron mobility.
Keywords:  defects      Te inclusions      semiconducting II-VI materials      CdZnTe  
Received:  05 December 2017      Revised:  28 December 2017      Accepted manuscript online: 
PACS:  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.61.Ga (II-VI semiconductors)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 51502244, 51702271, U1631116, and 51372205), the National Key Research and Development Program of China (Grant Nos. 2016YFF0101301 and 2016YFE0115200), the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201741) the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2016KJXX-09), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015BJ(II)ZS014).
Corresponding Authors:  Wan-Qi Jie     E-mail:  jwq@nwpu.edu.cn

Cite this article: 

Xu Fu(符旭), Fang-Bao Wang(王方宝), Xi-Ran Zuo(左希然), Ze-Jian Wang(王泽剑), Qian-Ru Wang(王倩茹), Ke-Qin Wang(王柯钦), Ling-Yan Xu(徐凌燕), Ya-Dong Xu(徐亚东), Rong-Rong Guo(郭榕榕), Hui Yu(于晖), Wan-Qi Jie(介万奇) Distinctive distribution of defects in CdZnTe: In ingots and their effects on the photoelectric properties 2018 Chin. Phys. B 27 037302

[1] Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L and James R B 2001 Mater. Sci. Eng. R 32 103
[2] James R B, Brunett B, Heffelfinger J, Scyoc J V, Lund J, Doty F P, Lingren C L, Olsen R, Cross E and Hermon H 1998 J. Electron. Mater. 27 788
[3] Eisen Y and Shor A 1998 J. Cryst. Growth 184 1302
[4] Rudolph P 2010 Defect Formation During Crystal Growth from the Melt (Heidelberg:Springer Berlin Heidelberg) pp. 159-201
[5] Fiederle M, Fauler A, Konrath J and Babentsov V 2004 IEEE T. Nucl. Sci. 51 1864
[6] Fiederle M, Eiche C, Salk M, Schwarz R, Benz K W, Stadler W, Hofmann D M and Meyer B K 1998 J. Appl. Phys. 84 6689
[7] Rudolph P, Engel A, Schentke I and Grochocki A 1995 J. Cryst. Growth 147 297
[8] Barz R U and Gille P 1995 J. Cryst. Growth 149 196
[9] Castaldini A, Cavallini A, Fraboni B, Fernandez P and Piqueras J 1996 J. Appl. Phys. 83 2121
[10] Zha G, Yang J, Xu L, Feng T, Wang N and Jie W 2014 J. Appl. Phys. 115 103
[11] Gu Y, Rong C, Xu Y, Shen H, Zha G, Wang N, Lv H, Li X, Wei D and Jie W 2015 Nucl. Instrum. Methods 343 89
[12] Fu X, Xu Y, Xu L, Gu Y, Jia N, Bai W, Zha G, Wang T and Jie W 2016 Crystengcomm 18 5667
[13] Rudolph P, Neubert M and Uhlberg M M 1993 J. Cryst. Growth 128 582
[14] Yang G, Bolotnikov A E, Fochuk P M, Camarda G S, Hossain A, Roy U N, Cui Y, Pinder R, Gray J and James R B 2014 Phys. Status Solidi 11 1328
[15] Li G Q, Jie W Q, Gu Z and Hua H 2003 Chin. Phys. Lett. 20 1600
[16] Xu L, Jie W, Fu X, Zha G, Feng T, Guo R, Wang T, Xu Y and Zaman Y 2014 Nucl. Instrum. Methods 767 318
[17] Castaldini A, Cavallini A, Fraboni B, Fernandez P and Piqueras J 1996 Appl. Phys. Lett. 69 3510
[18] Kim M D, Kang T W, Kim G H, Han M S, Cho H D, Kim J M, Jeoung Y T and Kim T W 1993 J. Appl. Phys. 73 4074
[19] Seto S, Tanaka A, Masa Y and Dairaku S 1988 Appl. Phys. Lett. 53 1524
[20] Jain S 2001 Photoluminescence Study of Cadmium Zinc Telluride (MS dissertation) (Morgantown:West Virginia University)
[21] Worschech L, Ossau W and Landwehr G 1995 Phys. Rev. B 81 13965
[22] Halliday D P, Potter M D G, Mullins J T and Brinkman A W 2000 J. Cryst. Growth 220 30
[23] Suzuki K, Inagaki K, Seto S, Tsubono I, Kimura N, Sawada T and Imai K 1996 J. Cryst. Growth 159 388
[24] Pavlovic M, Desnica U V and Gladic J 2000 J. Appl. Phys. 88 4563
[25] Pavlovic M, Jaksic M, Zorc H and Medunic Z 2008 J. Appl. Phys. 104 8177
[26] Soundararajan R and Lynn K G 2012 J. Appl. Phys. 112 431
[27] Lee E Y, James R B, Olsen R W and Hermon H 1999 J. Electron. Mater. 28 766
[28] Wei S H and Zhang S B 2014 Phys. Rev. B 66 155211
[29] Carvalho A, Tagantsev A K, Öberg S, Briddon P R and Setter N 2010 Phys. Rev. B 81 075215
[30] Yu P, Jie W and Tao W 2011 J. Mater. Sci. 46 3749
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[7] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[8] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[9] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[10] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[11] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[12] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[13] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[14] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!