PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Laser-driven relativistic electron dynamics in a cylindrical plasma channel |
Pan-Fei Geng(耿盼飞), Wen-Juan Lv(吕文娟), Xiao-Liang Li(李晓亮), Rong-An Tang(唐荣安), Ju-Kui Xue(薛具奎) |
Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration.
|
Received: 08 September 2017
Revised: 12 November 2017
Accepted manuscript online:
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005). |
Corresponding Authors:
Ju-Kui Xue
E-mail: xuejk@nwnu.edu.cn
|
Cite this article:
Pan-Fei Geng(耿盼飞), Wen-Juan Lv(吕文娟), Xiao-Liang Li(李晓亮), Rong-An Tang(唐荣安), Ju-Kui Xue(薛具奎) Laser-driven relativistic electron dynamics in a cylindrical plasma channel 2018 Chin. Phys. B 27 035201
|
[1] |
Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
|
[2] |
Leemans W and Esarey E 2009 Phys. Today 62 44
|
[3] |
Hooker S M 2013 Nat. Photonics 7 775
|
[4] |
Gahn C, Tsakiris G D, Pukhov A, Meyer-ter-Vehn J, Pretzler G, Thirolf P, Habs D and Witte K J 1999 Phys. Rev. Lett. 83 4772
|
[5] |
Leemans W P, Catravas P, Esarey E, Geddes C G R, Toth C, Trines R, Schroeder C B, Shadwick B A, Tilborg J and Faure J 2002 Phys. Rev. Lett. 89 174802
|
[6] |
Ting A, Moore C I, Krushelnick K, Manka C, Esarey E, Sprangle P, Hubbard R, Burris H R, Fischer R and Baine M 1997 Phys. Plasma 4 1889
|
[7] |
Goloviznin V V and Shep T J 1999 JETP Lett. 70 450
|
[8] |
Shen B and Yu M Y 2002 Phys. Rev. Lett. 89 275004
|
[9] |
Liao G Q, Li Y T, Li C, Su L N, Zheng Y, Liu M, Wang W M, Hu Z D, Yan W C, Dunn J, Nilsen J, Hunter J, Liu Y, Wang X, Chen L M, Ma J L, Lu X, Jin Z, Kodama R, Sheng Z M and Zhang J 2015 Phys. Rev. Lett. 114 255001
|
[10] |
Li Y T 2012 Appl. Phys. Lett. 100 254101
|
[11] |
Zhuo H B, Zhang S J, Li X H, Zhou H Y, Li X Z, Zou D B, Yu M Y, Wu H C, Sheng Z M and Zhou C T 2017 Phys. Rev. E 95 013201
|
[12] |
Zhou M L, Liu F, Li C, Du F, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Dong Q L and Zhang J 2012 Chin. Phys. Lett. 29 015202
|
[13] |
Pomerantz I, McCary E, Meadows A, Arefiev A, Bernstein A, Chester C, Cortez J, Donovan M, Dyer G, Gaul E, Hamilton D, Kuk D, Lestrade A, Wang C, Ditmire T and Hegelich B 2014 Phys. Rev. Lett. 113 184801
|
[14] |
Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W and Magill J 2000 Phys. Rev. Lett. 84 899
|
[15] |
Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I and Dangor A E 2000 Phys. Rev. Lett. 84 670
|
[16] |
Mackinnon A J, Sentoku Y, Patel P K, Price D W, Hatchett S, Key M H, Andersen C, Snavely R and Freeman R R 2002 Phys. Rev. Lett. 88 215006
|
[17] |
Xu M H, Li Y T, Liu F, Zhang Y, Lin X X, Wang S J, Meng L M, Wang Z H, Zheng J, Sheng Z M, Wei Z Y, Li Y J and Zhang J 2011 Acta Phys. Sin. 60 045204 (in Chinese)
|
[18] |
Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
|
[19] |
Sprangle P, Esarey E, Ting A and Joyce G 1988 Appl. Phys. Lett. 53 2146
|
[20] |
Wittig G, Karger O, Knetsch A, Xi Y, Deng A, Rosenzweig J B, Bruhwiler D L, Smith J, Manahan G G, Sheng Z M, Jaroszynski D A and Hidding B 2015 Phys. Rev. Stab. 18 081304
|
[21] |
Rosenzweig M N and Liu C S 1972 Phys. Rev. Lett. 29 701
|
[22] |
Joshi C, Mori W B, Katsouleas T, Dawson J M, Kindel J M and Forslund D W 1984 Nature 311 525
|
[23] |
Kitagawa Y, Matsumoto T, Minamihata T, Sawai K, Matsuo K, Mima K, Nishihara K, Azechi H, Tanaka K A, Takabe H and Nakai S 1992 Phys. Rev. Lett. 68 48
|
[24] |
Kawata S, Kong Q, Miyazaki S, Miyauchi K, Sonobe R, Sakai K, Nakajima K, Masuda S, Ho Y K, Miyanaga N, Limpouch J and Andrew A A 2005 Laser Part. Beams 23 61
|
[25] |
Andreev A, Platonov K and Kawata S 2009 Laser Part. Beams 27 449
|
[26] |
Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth Cs, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002
|
[27] |
Pukhov A, Sheng Z M and Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847
|
[28] |
Esarey E, Schroeder C B, Leemans W P and Hafizi B 1999 Phys. Plasmas 6 2262
|
[29] |
Zhang X, Khudik V N and Shvets G 2015 Phys. Rev. Lett. 114 184801
|
[30] |
Zhang X, Khudik V N, Pukhov A and Shvets G 2016 Plasma Phys. Control. Fusion 58 034011
|
[31] |
Shaw J L, Tsung F S, Vafaei-Najafabadi N, Marsh K A, Lemos N, Mori W B and Joshi C 2014 Plasma Phys. Control. Fusion 56 084006
|
[32] |
Kemp A J and Divol L 2012 Phys. Rev. Lett. 109 195005
|
[33] |
Zhang R, Cheng L H, Tang R A and Xue J K 2016 Phys. Plasmas 23 093105
|
[34] |
Sentoku Y, Kruer W, Matsuoka M and Pukhov A 2006 Fusion Sci. Technol. 49 278
|
[35] |
Arefiev A V, Khudik V N, Robinson A P L, Shvets G, Willingale L and Schollmeier M 2016 Phys. Plasmas 23 056704
|
[36] |
Khudik V N, Arefiev A V, Zhang X and Shvets G 2016 Phys. Plasmas 23 103108
|
[37] |
Arefiev A V, Breizman B N, Schollmeier M and Khudik V N 2012 Phys. Rev. Lett. 108 145004
|
[38] |
Arefiev A V, Khudik V N and Schollmeier M 2014 Phys. Plasmas 21 033104
|
[39] |
Arefiev A V, Khudik V N, Robinson A P L, Shvets G and Willingale L 2016 Phys. Plasmas 23 023111
|
[40] |
Arefiev A V, Khudik V N and Schollmeier M 2014 Phys. Plasmas 21 033104
|
[41] |
Schmitz M and Kull H J 2002 Europhys. Lett. 58 382
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|