Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 028703    DOI: 10.1088/1674-1056/27/2/028703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction

Li-Dong Dai(代立东)1, Hai-Ying Hu(胡海英)1, He-Ping Li(李和平)1, Wen-Qing Sun(孙文清)1,2, Jian-Jun Jiang(蒋建军)1
1. Key Laboratory of High-temperature and High-pressure Study of the Earth Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K-1223 K and 1.0 GPa-3.0 GPa in a frequency range of 10-1 Hz-106 Hz. The measured electrical conductivity along the ⊥[001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ±0.06 eV and 2.51 ±0.19 cm3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the ⊥[001] axis is approximately three times higher than that along the ⊥[100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst-Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.

Keywords:  electrical conductivity and diffusion coefficient      K-feldspar      anisotropy      conduction mechanism  
Received:  07 October 2017      Revised:  03 November 2017      Accepted manuscript online: 
PACS:  87.15.Pc (Electronic and electrical properties)  
  91.25.St (Magnetic fabrics and anisotropy)  
  91.60.Dc (Plasticity, diffusion, and creep)  
  91.60.Gf (High-pressure behavior)  
Corresponding Authors:  Li-Dong Dai     E-mail:  dailidong@vip.gyig.ac.cn
About author:  87.15.Pc; 91.25.St; 91.60.Dc; 91.60.Gf

Cite this article: 

Li-Dong Dai(代立东), Hai-Ying Hu(胡海英), He-Ping Li(李和平), Wen-Qing Sun(孙文清), Jian-Jun Jiang(蒋建军) Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction 2018 Chin. Phys. B 27 028703

[1] Huang X G, Xu Y S and Karato S I 2005 Nature 434 746
[2] Wang D J, Mookherjee M, Xu Y S and Karato S I 2006 Nature 443 977
[3] Huang X G, Bai W M and Zhou W G 2008 Chin. J. High Press. Phys. 22 237(in Chinese)
[4] Huang X G, Huang X G and Bai W M 2012 Chin. J. Geophys. 55 3144
[5] Dai L D, Hu H Y, Li H P, Jiang J J and Hui K S 2014 Am. Mineral. 99 1420
[6] Huang X G, Wang X X, Chen Z A and Bai W M 2017 Sci. Sin. Terrae 47 518
[7] Liu X, Dai L D, Deng L W, Fan D W, Liu Q, Ni H W, Sun Q, Wu X, Yang X Z, Zhai S M, Zhang B H, Zhang L and Li H P 2017 Chin. J. High Press. Phys. 31 657(in Chinese)
[8] Mareschal M, Kellett R L, Kurtz R D, Ludden J A, Ji S and Bailey R C 1995 Nature 375 134
[9] Evans R L, Tarits P, Chave A D, White A, Heinson G, Filloux J H, Toh H, Seama N, Utada H, Brook J R and Unsworth M J 1999 Science 286 752
[10] Liu J L, Bai W M, Kong X R and Zhu M X 1999 Chin. J. Geophys. 44 528
[11] Evans R L, Hirth G, Baba K, Forsyth D, Chave A and Mackie R 2005 Nature 437 249
[12] Dai L D and Karato S I 2014 Earth Planet. Sci. Lett. 408 79
[13] Novella D, Jacobsen B, Weber P K, Tyburczy J A, Ryerson F J and Du Frane W L 2017 Sci. Rep. 7 5344
[14] Tolland H G 1973 Nature 241 35
[15] Huebner J S and Voigt D E 1988 Am. Mineral. 73 1235
[16] Bagdassarov N S and Delépine N 2004 J. Phys. Chem. Solids 65 1517
[17] Dai L D and Karato S I 2009 Proc. Jpn. Acad. Ser. B 85 466
[18] Yang X Z, Keppler H, McCammon C and Ni H W 2012 Contrib. Mineral. Petrol. 163 33
[19] Li Y, Jiang H T and Yang X Z 2017 Geochim. Cosmochim. Ac. 217 16
[20] Noritomi K 1955 Sci. Rep. Tohoku. Univ. Ser. 56 119
[21] Khitarov N and Slutskiy A 1965 Geochem. Int. 2 1034
[22] Mizutani H and Kanamori H 1967 J. Phys. Earth 15 25
[23] Maury R 1968 Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91 355
[24] Piwinskii A J and Duba A G 1974 Geophys. Res. Lett. 1 209
[25] Piwinskii A J, Duba A G and Ho P 1977 Can. Mineral. 15 196
[26] Guseinov A A and Gargatsev I O 2002 Izv-Phys. Solid Earth 38 520
[27] Bakhterev V V 2008 Doklady Earth Sci. 420 554
[28] Hu H Y, Li H P, Dai L D, Shan S M and Zhu C M 2011 Am. Mineral. 96 1821
[29] Hu H Y, Li H P, Dai L D, Shan S M and Zhu C M 2013 Phys. Chem. Minerals 40 51
[30] Hu H Y, Dai L D, Li H P, Jiang J J and Hui K S 2014 Mineral. Petrol. 108 609
[31] Hu H Y, Dai L D, Li H P, Hui K S and Li J 2015 Solid State Ionics 276 136
[32] Ni H W, Keppler H, Manthilake M and Katsura T 2011 Contrib. Mineral. Petrol. 162 501
[33] Wang D J, Yu Y J and Zhou Y S 2014 High Pressure Res. 34 297
[34] El Maanaoui H, Wilangowski F, Maheshwari A, Wiemhöfer H D, Abart R and Stolwijk N A 2016 Phys. Chem. Minerals 43 327
[35] Liu X, Hu Z Y and Deng L W 2010 Acta Petrol. Sin. 26 3641
[36] Paterson M S 1982 Bull. Mineral. 105 20
[37] Mosenfelder J, Rossman G and Johnson E 2015 Am. Mineral. 100 1209
[38] Hui K S, Zhang H, Li H P, Dai L D, Hu H Y, Jiang J J and Sun W Q 2015 Solid Earth 6 1037
[39] Sun W Q, Dai L D, Li H P, Hu H Y, Wu L and Jiang J J 2017 Am. Mineral. 102, in press
[40] Shan S M, Wang R P, Guo J and Li H P 2007 Chin. J. High Press. Phys. 21 367
[41] Xu J A, Zhang Y M, Hou W, Xu H S, Guo J, Wang Z M, Zhao H, Wang R, Huang E and Xie H S 1994 High Temp. High Press. 26 375
[42] Roberts J J and Tyburczy J A 1991 J. Geophys. Res. 96 16205
[43] Roberts J J and Tyburczy J A 1993 Phys. Chem. Minerals 20 19
[44] Roberts J J and Duba A G 1995 Geophys. Res. Lett. 22 453
[45] Hu H Y, Dai L D, Li H P, Hui K S and Sun W Q 2017 J. Geophys. Res. 122 2751
[46] Jones A G, Palmer D, Islam M S and Mortimer M 2004 Phys. Chem. Minerals 31 313
[47] Karato S I and Dai L D 2009 Phys. Earth Planet. Inter. 174 19
[48] Hirsch L M, Shankland T J and Duba A G 1993 Geophys. J. Int. 114 36
[49] Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 237 73
[50] Romano C, Poe B T, Kreidie N and McCammon C A 2006 Am. Mineral. 91 1371
[51] Dai L D, Li H P, Hu H Y, Shan S M, Jiang J J and Hui K S 2012 Contrib. Mineral. Petrol. 163 689
[52] Xu Y S, Shankland T J and Duba A G 2000 Phys. Earth Planet. Inter. 118 149
[53] Dai L D and Karato S I 2009 Phys. Earth Planet. Inter. 176 83
[54] Ono S and Mibe K 2013 Eur. J. Mineral. 25 11
[55] Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 232 51
[56] Ono S and Mibe K 2015 Phys. Chem. Minerals 42 773
[57] Dai L D, Hu H Y, Li H P, Wu L, Hui K S, Jiang J J and Sun W Q 2016 Geochem. Geophys. Geosyst. 17 2394
[58] Samara G A 1984 Solid State Phys. 38 1
[59] Mibe K and Ono S 2011 Physica B 406 2018
[60] Behrens H, Johannes W and Schmalzried H 1990 Phys. Chem. Minerals 17 62
[61] Dai L D and Karato S I 2009 Phys. Earth Planet. Sci. Lett. 287 277
[62] Du Frane W L and Tyburczy J A 2012 Geochem. Geophys. Geosyst. 13 Q03004
[63] Yang X Z 2012 Earth Planet. Sci. Lett. 317 241
[64] Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 232 57
[65] Karato S I 2015 Phys. Earth Planet. Inter. 248 94
[66] Wilangowski F, Abart R, Divinski S V and Stolwijk N A 2015 Defect and Diffusion Forum (Zurich:Trans Tech Publications Inc.) pp. 79-84
[67] Jones A G 2016 Phys. Chem. Minerals 43 237
[68] Zhao C C and Yoshino T 2016 Earth Planet. Sci. Lett. 447 1
[69] Karato S I 1990 Nature 347 272
[70] Isard J O 1999 J. Non-cryst. Solids 246 16
[71] Lin T H and Yund R A 1972 Contrib. Mineral. Petrol. 34 177
[72] Foland K A 1974 Geochemical Transport and Kinetics (Washington:Carnegie Institute of Washington) pp. 77-98
[73] Jambon A and Carron J 1976 Geochim. Cosmochim. Ac. 40 897
[74] Dai L D, Li H P, Hu H Y, Jiang J J, Hui K S and Shan S M 2013 Tectonophysics 608 1086
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[12] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[13] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[14] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[15] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
No Suggested Reading articles found!