INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction |
Li-Dong Dai(代立东)1, Hai-Ying Hu(胡海英)1, He-Ping Li(李和平)1, Wen-Qing Sun(孙文清)1,2, Jian-Jun Jiang(蒋建军)1 |
1. Key Laboratory of High-temperature and High-pressure Study of the Earth Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K-1223 K and 1.0 GPa-3.0 GPa in a frequency range of 10-1 Hz-106 Hz. The measured electrical conductivity along the ⊥[001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ±0.06 eV and 2.51 ±0.19 cm3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the ⊥[001] axis is approximately three times higher than that along the ⊥[100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst-Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
|
Received: 07 October 2017
Revised: 03 November 2017
Accepted manuscript online:
|
PACS:
|
87.15.Pc
|
(Electronic and electrical properties)
|
|
91.25.St
|
(Magnetic fabrics and anisotropy)
|
|
91.60.Dc
|
(Plasticity, diffusion, and creep)
|
|
91.60.Gf
|
(High-pressure behavior)
|
|
Corresponding Authors:
Li-Dong Dai
E-mail: dailidong@vip.gyig.ac.cn
|
About author: 87.15.Pc; 91.25.St; 91.60.Dc; 91.60.Gf |
Cite this article:
Li-Dong Dai(代立东), Hai-Ying Hu(胡海英), He-Ping Li(李和平), Wen-Qing Sun(孙文清), Jian-Jun Jiang(蒋建军) Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction 2018 Chin. Phys. B 27 028703
|
[1] |
Huang X G, Xu Y S and Karato S I 2005 Nature 434 746
|
[2] |
Wang D J, Mookherjee M, Xu Y S and Karato S I 2006 Nature 443 977
|
[3] |
Huang X G, Bai W M and Zhou W G 2008 Chin. J. High Press. Phys. 22 237(in Chinese)
|
[4] |
Huang X G, Huang X G and Bai W M 2012 Chin. J. Geophys. 55 3144
|
[5] |
Dai L D, Hu H Y, Li H P, Jiang J J and Hui K S 2014 Am. Mineral. 99 1420
|
[6] |
Huang X G, Wang X X, Chen Z A and Bai W M 2017 Sci. Sin. Terrae 47 518
|
[7] |
Liu X, Dai L D, Deng L W, Fan D W, Liu Q, Ni H W, Sun Q, Wu X, Yang X Z, Zhai S M, Zhang B H, Zhang L and Li H P 2017 Chin. J. High Press. Phys. 31 657(in Chinese)
|
[8] |
Mareschal M, Kellett R L, Kurtz R D, Ludden J A, Ji S and Bailey R C 1995 Nature 375 134
|
[9] |
Evans R L, Tarits P, Chave A D, White A, Heinson G, Filloux J H, Toh H, Seama N, Utada H, Brook J R and Unsworth M J 1999 Science 286 752
|
[10] |
Liu J L, Bai W M, Kong X R and Zhu M X 1999 Chin. J. Geophys. 44 528
|
[11] |
Evans R L, Hirth G, Baba K, Forsyth D, Chave A and Mackie R 2005 Nature 437 249
|
[12] |
Dai L D and Karato S I 2014 Earth Planet. Sci. Lett. 408 79
|
[13] |
Novella D, Jacobsen B, Weber P K, Tyburczy J A, Ryerson F J and Du Frane W L 2017 Sci. Rep. 7 5344
|
[14] |
Tolland H G 1973 Nature 241 35
|
[15] |
Huebner J S and Voigt D E 1988 Am. Mineral. 73 1235
|
[16] |
Bagdassarov N S and Delépine N 2004 J. Phys. Chem. Solids 65 1517
|
[17] |
Dai L D and Karato S I 2009 Proc. Jpn. Acad. Ser. B 85 466
|
[18] |
Yang X Z, Keppler H, McCammon C and Ni H W 2012 Contrib. Mineral. Petrol. 163 33
|
[19] |
Li Y, Jiang H T and Yang X Z 2017 Geochim. Cosmochim. Ac. 217 16
|
[20] |
Noritomi K 1955 Sci. Rep. Tohoku. Univ. Ser. 56 119
|
[21] |
Khitarov N and Slutskiy A 1965 Geochem. Int. 2 1034
|
[22] |
Mizutani H and Kanamori H 1967 J. Phys. Earth 15 25
|
[23] |
Maury R 1968 Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91 355
|
[24] |
Piwinskii A J and Duba A G 1974 Geophys. Res. Lett. 1 209
|
[25] |
Piwinskii A J, Duba A G and Ho P 1977 Can. Mineral. 15 196
|
[26] |
Guseinov A A and Gargatsev I O 2002 Izv-Phys. Solid Earth 38 520
|
[27] |
Bakhterev V V 2008 Doklady Earth Sci. 420 554
|
[28] |
Hu H Y, Li H P, Dai L D, Shan S M and Zhu C M 2011 Am. Mineral. 96 1821
|
[29] |
Hu H Y, Li H P, Dai L D, Shan S M and Zhu C M 2013 Phys. Chem. Minerals 40 51
|
[30] |
Hu H Y, Dai L D, Li H P, Jiang J J and Hui K S 2014 Mineral. Petrol. 108 609
|
[31] |
Hu H Y, Dai L D, Li H P, Hui K S and Li J 2015 Solid State Ionics 276 136
|
[32] |
Ni H W, Keppler H, Manthilake M and Katsura T 2011 Contrib. Mineral. Petrol. 162 501
|
[33] |
Wang D J, Yu Y J and Zhou Y S 2014 High Pressure Res. 34 297
|
[34] |
El Maanaoui H, Wilangowski F, Maheshwari A, Wiemhöfer H D, Abart R and Stolwijk N A 2016 Phys. Chem. Minerals 43 327
|
[35] |
Liu X, Hu Z Y and Deng L W 2010 Acta Petrol. Sin. 26 3641
|
[36] |
Paterson M S 1982 Bull. Mineral. 105 20
|
[37] |
Mosenfelder J, Rossman G and Johnson E 2015 Am. Mineral. 100 1209
|
[38] |
Hui K S, Zhang H, Li H P, Dai L D, Hu H Y, Jiang J J and Sun W Q 2015 Solid Earth 6 1037
|
[39] |
Sun W Q, Dai L D, Li H P, Hu H Y, Wu L and Jiang J J 2017 Am. Mineral. 102, in press
|
[40] |
Shan S M, Wang R P, Guo J and Li H P 2007 Chin. J. High Press. Phys. 21 367
|
[41] |
Xu J A, Zhang Y M, Hou W, Xu H S, Guo J, Wang Z M, Zhao H, Wang R, Huang E and Xie H S 1994 High Temp. High Press. 26 375
|
[42] |
Roberts J J and Tyburczy J A 1991 J. Geophys. Res. 96 16205
|
[43] |
Roberts J J and Tyburczy J A 1993 Phys. Chem. Minerals 20 19
|
[44] |
Roberts J J and Duba A G 1995 Geophys. Res. Lett. 22 453
|
[45] |
Hu H Y, Dai L D, Li H P, Hui K S and Sun W Q 2017 J. Geophys. Res. 122 2751
|
[46] |
Jones A G, Palmer D, Islam M S and Mortimer M 2004 Phys. Chem. Minerals 31 313
|
[47] |
Karato S I and Dai L D 2009 Phys. Earth Planet. Inter. 174 19
|
[48] |
Hirsch L M, Shankland T J and Duba A G 1993 Geophys. J. Int. 114 36
|
[49] |
Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 237 73
|
[50] |
Romano C, Poe B T, Kreidie N and McCammon C A 2006 Am. Mineral. 91 1371
|
[51] |
Dai L D, Li H P, Hu H Y, Shan S M, Jiang J J and Hui K S 2012 Contrib. Mineral. Petrol. 163 689
|
[52] |
Xu Y S, Shankland T J and Duba A G 2000 Phys. Earth Planet. Inter. 118 149
|
[53] |
Dai L D and Karato S I 2009 Phys. Earth Planet. Inter. 176 83
|
[54] |
Ono S and Mibe K 2013 Eur. J. Mineral. 25 11
|
[55] |
Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 232 51
|
[56] |
Ono S and Mibe K 2015 Phys. Chem. Minerals 42 773
|
[57] |
Dai L D, Hu H Y, Li H P, Wu L, Hui K S, Jiang J J and Sun W Q 2016 Geochem. Geophys. Geosyst. 17 2394
|
[58] |
Samara G A 1984 Solid State Phys. 38 1
|
[59] |
Mibe K and Ono S 2011 Physica B 406 2018
|
[60] |
Behrens H, Johannes W and Schmalzried H 1990 Phys. Chem. Minerals 17 62
|
[61] |
Dai L D and Karato S I 2009 Phys. Earth Planet. Sci. Lett. 287 277
|
[62] |
Du Frane W L and Tyburczy J A 2012 Geochem. Geophys. Geosyst. 13 Q03004
|
[63] |
Yang X Z 2012 Earth Planet. Sci. Lett. 317 241
|
[64] |
Dai L D and Karato S I 2014 Phys. Earth Planet. Inter. 232 57
|
[65] |
Karato S I 2015 Phys. Earth Planet. Inter. 248 94
|
[66] |
Wilangowski F, Abart R, Divinski S V and Stolwijk N A 2015 Defect and Diffusion Forum (Zurich:Trans Tech Publications Inc.) pp. 79-84
|
[67] |
Jones A G 2016 Phys. Chem. Minerals 43 237
|
[68] |
Zhao C C and Yoshino T 2016 Earth Planet. Sci. Lett. 447 1
|
[69] |
Karato S I 1990 Nature 347 272
|
[70] |
Isard J O 1999 J. Non-cryst. Solids 246 16
|
[71] |
Lin T H and Yund R A 1972 Contrib. Mineral. Petrol. 34 177
|
[72] |
Foland K A 1974 Geochemical Transport and Kinetics (Washington:Carnegie Institute of Washington) pp. 77-98
|
[73] |
Jambon A and Carron J 1976 Geochim. Cosmochim. Ac. 40 897
|
[74] |
Dai L D, Li H P, Hu H Y, Jiang J J, Hui K S and Shan S M 2013 Tectonophysics 608 1086
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|