Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 025201    DOI: 10.1088/1674-1056/27/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling

Lu-Lu Zhao(赵璐璐)1,2, Yue Liu(刘悦)1, Tagra Samir1
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
Abstract  A one-dimensional (1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases, the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.
Keywords:  RF glow discharge      secondary electron emission      fluid model  
Received:  18 August 2017      Revised:  12 October 2017      Accepted manuscript online: 
PACS:  52.20.-j (Elementary processes in plasmas)  
  52.25.-b (Plasma properties)  
  5.25.Jm  
  52.30.-q (Plasma dynamics and flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172101).
Corresponding Authors:  Yue Liu     E-mail:  liuyue@dlut.edu.cn
About author:  52.20.-j; 52.25.-b; 5.25.Jm; 52.30.-q

Cite this article: 

Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling 2018 Chin. Phys. B 27 025201

[1] Vahedi V, Birdsall C K, Lieberman M A, Dipeso G and Rognlien T D 1993 Plasma Sources Sci. Technol. 2 273
[2] Vender D and Boswell R W 1990 IEEE Trans. Plasma Sci. 18 725
[3] Lisovskiy V, Martins S, Landry K, Douai D, Booth J P, Cassagne V and Yegorenkov V 2005 Phys. Plasmas 12 093505
[4] Langendorf S and Walker M 2015 Phys. Plasmas 22 033515
[5] Choi E H, Lim J Y, Kim Y G, Ko J J, Kim D L, Lee C W and Cho G S 1999 J. Appl. Phys. 86 6525
[6] Surendra M and Graves D B 1992 J. Appl. Phys. 71 5189
[7] Godyak V A, Piejak R B and Alexandrovich B M 1992 Plasma Sources Sci. Technol. 1 36
[8] Surendra M and Graves D B 1991 IEEE Trans. Plasma Sci. 19 144
[9] Korolov I, Derzsi A, Donkó Z and Schulze J 2013 Appl. Phys. Lett. 103 064102
[10] Yu Q, Deng Y F, Liu Y and Han X W 2008 Chin. Phys. Lett. 7 2569
[11] Phelps A V, Pitchford L C, Pédoussat C and Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1
[12] Gogolides E and Sawin H H 1992 J. Appl. Phys. 72 3988
[13] Ohtsu Y and Fujita H 2004 Phys. Lett. 85 4875
[14] Ohtsu Y and Fujita H 2008 Appl. Phys. Lett. 92 171501
[15] Lafleur T, Chabert P and Booth J P 2013 J. Phys. D:Appl. Phys. 46 135201
[16] Schulze J, Donkó Z, Scungel E and Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 045007
[17] Donko Z, Schulze J, Czarnetzki U, Derzsi A, Hartmann P, Korolov I and Schungel E 2012 Plasma Physics and Controlled Fusion 54 124003
[18] Godyak V A and Piejak R B 1990 Phys. Rev. Lett. 65 996
[19] Lieberman M A and Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955
[20] Turner M M 1995 Phys. Rev. Lett. 75 1312
[21] Gozadinos G, Vender D, Turner M M and Lieberman M A 2001 Plasma Sources Sci. Technol. 10 117
[22] Schulze J, Heil B G, Luggenholscher D, Brinkmann R P and U Czarnetzki 2008 J. Phys. D:Appl. Phys. 41 195212
[23] Boeuf J P and Belenguer P 1992 J. Appl. Phys. 71 4751
[24] Belenguer P and Boeuf J P 1990 Phys. Rev. A 41 4447
[25] Boeuf J P 1987 Phys. Rev. A 36 2782
[26] Park S K and Economou D J 1990 J. Appl. Phys. 68 3904
[27] Chen G and Raja L L 2004 J. Appl. Phys. 96 6073
[28] Lymberopoulos D P and Economou D J 1993 J. Appl. Phys. 73 3668
[29] Cluggish B P and Munson C P 1998 J. Appl. Phys. 84 5945
[30] Lafleur T, Chabert P and Booth J P 2014 Plasma Sources Sci. Technol. 23 035010
[31] Liu Q, Liu Y, Samir T and Ma Z S 2014 Phys. Plasmas 21 083511
[1] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[2] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[3] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[4] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[5] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[6] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[7] Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve
Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照). Chin. Phys. B, 2019, 28(7): 077901.
[8] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[9] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[10] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[11] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[12] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[13] Sheath structure in plasma with two species of positive ions and secondary electrons
Xiao-Yun Zhao(赵晓云), Nong Xiang(项农), Jing Ou(欧靖), De-Hui Li(李德徽), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2016, 25(2): 025202.
[14] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[15] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
No Suggested Reading articles found!