Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 125203    DOI: 10.1088/1674-1056/25/12/125203

Numerical simulation of a direct current glow discharge in atmospheric pressure helium

Zeng-Qian Yin(尹增谦)1, Yan Wang(汪岩)1,2, Pan-Pan Zhang(张盼盼)2, Qi Zhang(张琦)2, Xue-Chen Li(李雪辰)2
1. Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China;
2. College of Physics Science & Technology, Hebei University, Baoding 071002, China

Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics.

Keywords:  direct current discharge      one-dimensional fluid model      Townsend regime      glow regime  
Received:  05 July 2016      Revised:  20 August 2016      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.80.Tn (Other gas discharges)  
  52.80.Hc (Glow; corona)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050 and 10805013), the Midwest Universities Comprehensive Strength Promotion Project, the Natural Science Foundation of Hebei Province, China (Grant Nos. A2016201042 and A2015201092), and the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC011).

Corresponding Authors:  Xue-Chen Li     E-mail:

Cite this article: 

Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰) Numerical simulation of a direct current glow discharge in atmospheric pressure helium 2016 Chin. Phys. B 25 125203

[1] Sun W, Li G and Li H 2007 Appl. Phys. Lett. 101 123302
[2] Zhang Z, Qiu Y and Lou Y 2003 J. Phys. D:Appl. Phys. 36 2980
[3] Deng X T and Shi J J 2005 Appl. Phys. Lett. 87 153901
[4] Plaksin V Y, Penkov O V, Ko M K and Lee H J 2010 Plasma Sci. Technol. 12 688
[5] Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B and Ostrikov K 2016 Phys. Rep. 630 1
[6] Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
[7] Fang Z, Qiu Y, Zhang C and Kuffel E 2007 Plasma Sources Sci. Technol. 40 1401
[8] Yang D, Li S, Nie D, Zhang S and Wang W 2012 Plasma Sources Sci. Technol. 21 035004
[9] Kanazawa S, Kogoma M and Moriwaki T 1988 J. Phys. D:Appl. Phys. 21 838
[10] Lee D, Park J M, Hong S H and Kim Y 2005 IEEE Trans. Plasma Sci. 33 949
[11] Zhang P and Kortshagen U 2006 J. Phys. D:Appl. Phys. 39 153
[12] Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C and Wang L M 2007 Appl. Phys. Lett. 91 221504
[13] Wang Q, Sun J Z and Wang D Z 2009 Phys. Plasmas 16 043503
[14] Wang Q, Sun J Z and Wang D Z 2011 Phys. Plasmas 18 103504
[15] Akishev Y S, Goossens O, Callebaut T, Leys C, Napartovich A and Trushkin N 2001 J. Phys. D:Appl. Phys. 34 2875
[16] Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer-Verlag)
[17] Arkhipenko V I, Zgirovskii S M, Kirillov A A and Simonchick L V 2002 Plasma Phys. Rep. 28 858
[18] Leys C, Bruggeman P, Liu J J, Degroote J, Kong M G and Vierendeels J 2008 J. Phys. D:Appl. Phys. 41 215201
[19] Leys C and Bruggeman P 2009 J. Phys. D:Appl. Phys. 42 053001
[20] Deng X L, Nikiforov A Y, Vanraes P and Leys C 2013 J. Appl. Phys. 113 023305
[21] Robert R A and Vladimir I K 2003 J. Phys. D:Appl. Phys. 36 2986
[22] Liu F C, Yan W and Wang D Z 2013 Phys. Plasmas 20 122116
[23] Li X C, Niu D Y, Yin Z Q, Fang T Z and Wang L 2012 Phys. Plasmas 19 083505
[24] Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2012 Chin. Phys. B 21 075204
[25] Deloche R, Monchicourt P and Cheret M, et al. 1976 Phys. Rev. A 13 1140
[26] Xu X J 1996 Discharge Physics of Gas (Shanghai:Fudan University Press) p. 277
[27] Ward A L 1962 J. Appl. Phys. 33 2789
[28] Kulikovsky AA 1994 J. Phys. D:Appl. Phys. 27 2556
[29] Scharferter D L and Gummel H K 1969 IEEE Trans. Electron. Dev. 16 64
[30] Davies A J and Evans J G 1980 J. Phys. D:Appl. Phys. 13 161
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[5] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[6] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[7] Landau damping of electrons with bouncing motion in a radio-frequency plasma
Jun Tao(陶军), Nong Xiang(项农), Yemin Hu(胡业民), and Yueheng Huang(黄跃恒). Chin. Phys. B, 2021, 30(12): 125202.
[8] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[9] Effect of pulse duration on generation of attosecond pulse with coherent wake emission
Siyu Chen(陈思宇), Zhinan Zeng(曾志男), and Ruxin Li(李儒新). Chin. Phys. B, 2021, 30(11): 114206.
[10] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[11] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[12] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[13] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[14] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[15] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
No Suggested Reading articles found!