PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Numerical simulation of a direct current glow discharge in atmospheric pressure helium |
Zeng-Qian Yin(尹增谦)1, Yan Wang(汪岩)1,2, Pan-Pan Zhang(张盼盼)2, Qi Zhang(张琦)2, Xue-Chen Li(李雪辰)2 |
1. Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China;
2. College of Physics Science & Technology, Hebei University, Baoding 071002, China |
|
|
Abstract Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics.
|
Received: 05 July 2016
Revised: 20 August 2016
Accepted manuscript online:
|
PACS:
|
52.65.-y
|
(Plasma simulation)
|
|
52.80.Tn
|
(Other gas discharges)
|
|
52.80.Hc
|
(Glow; corona)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050 and 10805013), the Midwest Universities Comprehensive Strength Promotion Project, the Natural Science Foundation of Hebei Province, China (Grant Nos. A2016201042 and A2015201092), and the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC011). |
Corresponding Authors:
Xue-Chen Li
E-mail: plasmalab@126.com
|
Cite this article:
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰) Numerical simulation of a direct current glow discharge in atmospheric pressure helium 2016 Chin. Phys. B 25 125203
|
[1] |
Sun W, Li G and Li H 2007 Appl. Phys. Lett. 101 123302
|
[2] |
Zhang Z, Qiu Y and Lou Y 2003 J. Phys. D:Appl. Phys. 36 2980
|
[3] |
Deng X T and Shi J J 2005 Appl. Phys. Lett. 87 153901
|
[4] |
Plaksin V Y, Penkov O V, Ko M K and Lee H J 2010 Plasma Sci. Technol. 12 688
|
[5] |
Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B and Ostrikov K 2016 Phys. Rep. 630 1
|
[6] |
Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
|
[7] |
Fang Z, Qiu Y, Zhang C and Kuffel E 2007 Plasma Sources Sci. Technol. 40 1401
|
[8] |
Yang D, Li S, Nie D, Zhang S and Wang W 2012 Plasma Sources Sci. Technol. 21 035004
|
[9] |
Kanazawa S, Kogoma M and Moriwaki T 1988 J. Phys. D:Appl. Phys. 21 838
|
[10] |
Lee D, Park J M, Hong S H and Kim Y 2005 IEEE Trans. Plasma Sci. 33 949
|
[11] |
Zhang P and Kortshagen U 2006 J. Phys. D:Appl. Phys. 39 153
|
[12] |
Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C and Wang L M 2007 Appl. Phys. Lett. 91 221504
|
[13] |
Wang Q, Sun J Z and Wang D Z 2009 Phys. Plasmas 16 043503
|
[14] |
Wang Q, Sun J Z and Wang D Z 2011 Phys. Plasmas 18 103504
|
[15] |
Akishev Y S, Goossens O, Callebaut T, Leys C, Napartovich A and Trushkin N 2001 J. Phys. D:Appl. Phys. 34 2875
|
[16] |
Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer-Verlag)
|
[17] |
Arkhipenko V I, Zgirovskii S M, Kirillov A A and Simonchick L V 2002 Plasma Phys. Rep. 28 858
|
[18] |
Leys C, Bruggeman P, Liu J J, Degroote J, Kong M G and Vierendeels J 2008 J. Phys. D:Appl. Phys. 41 215201
|
[19] |
Leys C and Bruggeman P 2009 J. Phys. D:Appl. Phys. 42 053001
|
[20] |
Deng X L, Nikiforov A Y, Vanraes P and Leys C 2013 J. Appl. Phys. 113 023305
|
[21] |
Robert R A and Vladimir I K 2003 J. Phys. D:Appl. Phys. 36 2986
|
[22] |
Liu F C, Yan W and Wang D Z 2013 Phys. Plasmas 20 122116
|
[23] |
Li X C, Niu D Y, Yin Z Q, Fang T Z and Wang L 2012 Phys. Plasmas 19 083505
|
[24] |
Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2012 Chin. Phys. B 21 075204
|
[25] |
Deloche R, Monchicourt P and Cheret M, et al. 1976 Phys. Rev. A 13 1140
|
[26] |
Xu X J 1996 Discharge Physics of Gas (Shanghai:Fudan University Press) p. 277
|
[27] |
Ward A L 1962 J. Appl. Phys. 33 2789
|
[28] |
Kulikovsky AA 1994 J. Phys. D:Appl. Phys. 27 2556
|
[29] |
Scharferter D L and Gummel H K 1969 IEEE Trans. Electron. Dev. 16 64
|
[30] |
Davies A J and Evans J G 1980 J. Phys. D:Appl. Phys. 13 161
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|