Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117101    DOI: 10.1088/1674-1056/27/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study on the mechanics, optical, and phonon properties of carbon chains

Jin-Ping Li(李金平)1, Song-He Meng(孟松鹤)1, Han-Tao Lu(陆汉涛)2, Takami Tohyama(遠山貴巳)3
1 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150080, China;
2 Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
3 Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
Abstract  

Besides graphite, diamond, graphene, carbon nanotubes, and fullerenes, there is another allotrope of carbon, carbyne, existing in the form of a one-dimensional chain of carbon atoms. It has been theoretically predicted that carbyne would be stronger, stiffer, and more exotic than other materials that have been synthesized before. In this article, two kinds of carbyne, i.e., cumulene and polyyne are investigated by the first principles, where the mechanical properties, electronic structure, optical and phonon properties of the carbynes are calculated. The results on the crystal binding energy and the formation energy show that though both are difficult to be synthesized from diamond or graphite, polyyne is more stable and harder than cummulene. The tensile stiffness, bond stiffness, and Young's modulus of cumulene are 94.669 eV/Å, 90.334 GPa, and 60.62 GPa, respectively, while the corresponding values of polyyne are 94.939 eV/Å, 101.42 GPa, and 60.06 GPa. The supercell calculation shows that carbyne is most stable at N=5, where N is the supercell number, which indicates that the carbon chain with 10 atoms is most stable. The calculation on the electronic band structure shows that cumulene is a conductor and polyyne is a semiconductor with a band gap of 0.37 eV. The dielectric function of carbynes varies along different directions, consistent with the one-dimensional nature of the carbon chains. In the phonon dispersion of cumulene, there are imaginary frequencies with the lowest value down to-3.817 THz, which indicates that cumulene could be unstable at room temperature and normal pressure.

Keywords:  carbyne      first-principles calculation      electronic structure      physical properties  
Received:  26 June 2018      Revised:  28 August 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11672087), the Strategic Programs for Innovative Research (SPIRE), the Computational Materials Science Initiative (CMSI), and the Yukawa International Program for Quark-Hadron Sciences at YITP, Kyoto University, Japan.

Corresponding Authors:  Jin-Ping Li     E-mail:  lijinping@hit.edu.cn

Cite this article: 

Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳) First-principles study on the mechanics, optical, and phonon properties of carbon chains 2018 Chin. Phys. B 27 117101

[1] Belenkov E A and Mavrinsky V V 2008 Crystallogr. Rep. 53 83
[2] Khoo K H, Neaton J B, Son Y W, Cohen M L and Louie S G 2008 Nano Lett. 8 2900
[3] Zanolli Z, Onida G and Charlier J C 2010 ACS Nano 4 5174
[4] Zeng M G, Shen L, Cai Y Q, Sha Z D and Feng Y P 2010 Appl. Phys. Lett. 96 042104
[5] Akdim B and Pachter R 2011 ACS Nano 5 1769
[6] Artyukhov V I, Liu M and Yakobson B I 2014 Nano Lett. 14 4224
[7] Zhang Y Z, Su Y J, Wang L, Kong E S, Chen X S and Zhang Y F 2011 Nanoscale Res. Lett. 6 577
[8] Sorokin P B, Lee H, Antipina L Y, Singh A K and Yakobson B I 2011 Nano Lett. 11 2660
[9] Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 82 195444
[10] Webster A 1980 Mon. Not. R. Astron. Soc. 192 7P
[11] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967
[12] Liu M J, Artyukhov V I, Lee H, Xu F B and Yakobson B I 2013 ACS Nano 7 10075
[13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. -Condens. Mat. 14 2717
[14] Wang J, Li H P and Stevens R 1992 J. Mater. Sci. 27 5397
[15] Zhang Q, Zhang H and Cheng X L 2018 Chin. Phys. B 27 027301
[16] Kudryavtsev Y P, Evsyukov S E, Guseva M B, Babaev V G and Khvostov V V 1993 Russ. Chem. Bull. 42 399
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!