Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114219    DOI: 10.1088/1674-1056/27/11/114219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Supercontinuum manipulation based on the influence of chirp on soliton spectral tunneling

Saili Zhao(赵赛丽)1,2, Huan Yang(杨华)1,3, Yilin Zhao(赵奕霖)1, Yuzhe Xiao(肖宇哲)4
1 College of Information Science and Engineering, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China;
2 Electrical Engineering Department, University of California, Los Angeles, California 90095, USA;
3 Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha 410082, China;
4 Department of Electrical Engineering, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
Abstract  

The soliton spectral tunneling (SST) effect, as a soliton spectral switching phenomenon, enables a soliton to tunnel through a spectrally limited regime of normal dispersion in the fiber with multiple zero dispersion wavelengths (ZDWs). Since initial chirp can affect the behavior of pulse evolution, we numerically study the influence of chirp on the SST in the process of supercontinuum (SC) occurring in a photonic crystal fiber (PCF) with three ZDWs. The linear chirp is imposed by a phase modulation of input pulse while maintaining a constant pulse duration. Interestingly, it is found that the spectral range and flatness can be flexibly tuned by adjusting the initial chirp value. More specifically, positive chirp facilitates soliton self-frequency shifting (SSFS), making the soliton quickly transfer from one anomalous dispersion regime to another accompanied by the generation of dispersive waves (DWs). In this case, the SST effect further expands the spectral range by enhancing both the red-shift of the fundamental soliton and the blue-shift of DWs, thus generating a broader SC. However, negative chirp suppresses the SST effect, resulting in a smoother SC at the expense of bandwidth. Therefore, the findings in this work provide interesting results relating to the influence of initial chirp on the SST to generate a considerably smoother and broader SC, which is extremely useful in many applications, such as wavelength conversion and SC generation.

Keywords:  soliton spectral tunneling      supercontinuum generation      chirp  
Received:  17 April 2018      Revised:  07 August 2018      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.65.-k (Nonlinear optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61275137 and 61571186) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2061).

Corresponding Authors:  Saili Zhao, Huan Yang     E-mail:  zhaosaili@hnu.edu.cn;huayang@hnu.edu.cn

Cite this article: 

Saili Zhao(赵赛丽), Huan Yang(杨华), Yilin Zhao(赵奕霖), Yuzhe Xiao(肖宇哲) Supercontinuum manipulation based on the influence of chirp on soliton spectral tunneling 2018 Chin. Phys. B 27 114219

[1] Foster M A, Turner A C, Lipson M and Gaeta A L 2008 Opt. Express 16 1300
[2] Dai C Q and Chen J L 2012 Chin. Phys. B 21 080507
[3] Agrawal G P 2012 Nonlinear Fiber Optics (5th Edn.) (New York:Academic Press)
[4] Zhao S, Yang H, Zhao C and Xiao Y 2017 Opt. Express 25 7192
[5] Dudley J M, Gentry G and Coen S 2006 Rev. Mod. Phys. 78 1135
[6] Tsoy E N and Sterke C M d 2007 Phys. Rev. A 76 043804
[7] Kibler B, Lacourt P A, Courvoisier F and Dudley J M 2007 Electron. Lett. 43 967
[8] Belyaeva T, Serkin V, Hernandez-Tenorio C and Garcia-Santibanez F 2010 J. Mod. Opt. 57 1087
[9] Guo H, Wang S, Zeng X and Bache M 2013 IEEE Photon. Technol. Lett. 25 1928
[10] Stepniewski G, Klimczak M, Bookey H, Siwicki B, Pysz D, Stepien R, Kar A K, Waddie A J, Taghizadeh M R and Buczynski R 2014 Laser Phys. Lett. 11 055103
[11] Knight J C 2003 Nature 424 847
[12] Manili G, Tonello A, Modotto D, Andreana M, Couderc V, Minoni U and Wabnitz S 2012 Opt. Lett. 37 4101
[13] Dupont S, Moselund P, Leick L, Ramsay J and Keiding S 2013 J. Opt. Soc. Am. B 30 2570
[14] Lei D J, Dong H, Yang H, Wen S C, Zhang J G and Xu H W 2009 Chin. Phys. Lett. 26 6
[15] Falk P, Frosz M H and Bang O 2005 Opt. Express 13 7535
[16] Wang W B, Yang H, Tang P H and Han F 2013 Acta Phys. Sin. 62 18(in Chinese)
[17] Stark S P, Biancalana F, Podlipensky A and Russell P St J 2011 Phys. Rev. A 83 3818
[18] Akhmediev N and Karlsson M 1995 Phys. Rev. A 51 2602
[19] Poletti F, Horak P and Richardson D J 2008 IEEE Photon. Technol. Lett. 20 1414
[20] Wang S, Guo H, Fan D, Bai X and Zeng X 2013 IEEE Photon. 5 6100608
[21] Zhao S, Yang H, Chen N, Fu X and Zhao C 2015 IEEE Photon. 7 7102709
[22] Neyra E, Videla F, Pérez-Hernández J A, Ciappina M F, Roso L and Torchia G A 2016 Laser Phys. Lett. 13 115303
[23] Zhang H, Yu S, Zhang J and Gu W 2007 Opt. Express 15 1147
[24] Fuerbach A, Miese C, Koehler W and Geissler M 2009 Opt. Express 17 5905
[25] Valadan M, D'Ambrosio D, Gesuele F, Velotta R and Altucci C 2015 Laser Phys. Lett. 12 025302
[26] Cheng C F, Wang X F and Shen B F 2004 Chin. Phys. Lett. 21 10
[27] Xiao Y, Maywar D N and Agrawal G P 2012 J. Opt. Soc. Amer. B 29 2958
[28] Corwin K L, Newbury N R, Dudley J M, Coen S, Diddams S A, Weber K and Windeler R S 2004 Phys. Rev. Lett. 90 11
[29] Zhang Q, Takahashi E J, Müucke O D, Lu P and Midorikawa K 2011 Opt. Express 19 7190
[30] Zhu Z and Brown T G 2004 Opt. Express 12 689
[31] Blow K J and Wood D 1989 IEEE J. Quantum Electron. 25 2665
[32] Hao Z, Zhao C, Wen J, Wen S and Fan D 2011 Acta Opt. Sin. 31 75
[1] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[2] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[3] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[4] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[5] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[6] Assessment of cortical bone fatigue using coded nonlinear ultrasound
Duwei Liu(刘度为), Boyi Li(李博艺), Dongsheng Bi(毕东生), Tho N. H. T. Tran, Yifang Li(李义方), Dan Liu(刘丹), Ying Li(李颖), and Dean Ta(他得安). Chin. Phys. B, 2021, 30(9): 094301.
[7] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[8] Effect of symmetrical frequency chirp on pair production
Kun Wang(王焜), Xuehua Hu(胡学华), Sayipjamal Dulat, and Bai-Song Xie(谢柏松). Chin. Phys. B, 2021, 30(6): 060204.
[9] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[10] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[11] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[12] Propagation properties of the chirped Airy-Gaussian vortex electron plasma wave
Lican Wu(吴利灿), Jinhong Wu(吴锦鸿), Yujun Liu(刘煜俊), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(12): 125202.
[13] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[14] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[15] Interference effect of photoionization of hydrogen atoms by ultra-short and ultra-fast high-frequency chirped pulses
Ningyue Wang(王宁月), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(8): 083403.
No Suggested Reading articles found!