PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Propagation properties of the chirped Airy-Gaussian vortex electron plasma wave |
Lican Wu(吴利灿), Jinhong Wu(吴锦鸿), Yujun Liu(刘煜俊), and Dongmei Deng(邓冬梅)† |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China |
|
|
Abstract We introduce a new class of the chirped Airy-Gaussian vortex electron plasma (CAiGVEP) wave which constitutes the exact and continuous transition modes between the chirped Airy vortex and the chirped Gaussian vortex electron plasma wave. The intensity, the phase, and the angular momentum density flow of the CAiGVEP wave are discussed under different distribution factors and different chirp modes.
|
Received: 19 May 2020
Revised: 15 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108), the Science and Technology Program of Guangzhou City (Grant No. 2019050001), and the Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (Grant Nos. pdjh2020a0149 and pdjh2019a0127). |
Corresponding Authors:
†Corresponding author. E-mail: dmdeng@263.net
|
Cite this article:
Lican Wu(吴利灿), Jinhong Wu(吴锦鸿), Yujun Liu(刘煜俊), and Dongmei Deng(邓冬梅) Propagation properties of the chirped Airy-Gaussian vortex electron plasma wave 2020 Chin. Phys. B 29 125202
|
[1] Stix T H1992 Waves in plasmas pp. 1-566 [2] Salandrino A and Christodoulides D N2010 Opt. Lett. 35 124913 [3] Gupta N and Singh A Optik 127 8542 DOI: 10.1016/j.ijleo.2016.04.0452016 [4] Ouahid L, Dalil-Essakali L and Belafhal A Optik 154 58 DOI: 10.1016/j.ijleo.2017.10.0092018 [5] Dolai B and Prajapati R P2020 Phys. Lett. A 126462 [6] Berry M V and Balazs N L Am. J. Phys. 47 264 DOI: 10.1119/1.118551979 [7] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N2008 Opt. Lett. 33 90014 [8] Siviloglou G A and Christodoulides D N2007 Opt. Lett. 32 78349 [9] Wang L, Ji X, Deng Y, Li X, Wang T, Fan X and Yu H Opt. Commun. 441 190 DOI: 10.1016/j.optcom.2019.02.0582019 [10] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N Opt. Express 16 12880 DOI: 10.1364/OE.16.0128802008 [11] Baumgartl J, Mazilu M and Dholakia K Nat. Photon. 2 675 DOI: 10.1038/nphoton.2008.2012008 [12] Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S Nat. Commun. 4 2622 DOI: 10.1038/ncomms36222013 [13] Hu D, Liang Y, Chen Y, Chen Z H and Huang X G Opt. Commun. 404 196 DOI: 10.1016/j.optcom.2017.04.0362017 [14] Xu C J, Hu H C, Liu Y J and Deng D M Opt. Lett. 45 1451 DOI: 10.1364/OL.3897532020 [15] Bandres M A and Gutièrrez-Vega J C Opt. Express 15 16719 DOI: 10.1364/OE.15.0167192007 [16] Melinger J S, Gandhi S R, Hariharan A, Tull J X and Warren W S Phys. Rev. Lett. 68 2000 DOI: 10.1103/PhysRevLett.68.20001992 [17] Chremmos I and Giamalaki M2015 J. Opt. Sot. Am. A 32 867 [18] Shi X, Huang X, Deng Y, Tan C, Bai Y and Fu X Opt. Commun. 399 16 DOI: 10.1016/j.optcom.2017.04.0642017 [19] Xie J T, Zhang J B, Ye J R, Liu H, Liang Z Y, Long S J, Zhou K Z and Deng D M Opt. Express 26 5845 DOI: 10.1364/OE.26.0058452018 [20] Zhou K Z, Zhang J B, Mo H R, Chen J H, Yang X L, Lai Z Y, Chen X Y, Yang X B and Deng D M J. Opt. 20 075601 DOI: 10.1088/2040-8986/aac4c62018 [21] Chen S J, Lin G, Xie J T, Zhen Y, Ma S and Deng D M Opt. Commun. 430 364 DOI: 10.1016/j.optcom.2018.08.0742019 [22] Yang X Y, Hong S H, Liang Z Y and Deng D M Results in Physics 15 102691 DOI: 10.1016/j.rinp.2019.1026912019 [23] Mendonca J T Phys. Plasmas 19 112113 DOI: 10.1063/1.47690302012 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|