Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 125202    DOI: 10.1088/1674-1056/aba9cc
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Propagation properties of the chirped Airy-Gaussian vortex electron plasma wave

Lican Wu(吴利灿), Jinhong Wu(吴锦鸿), Yujun Liu(刘煜俊), and Dongmei Deng(邓冬梅)†
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Abstract  We introduce a new class of the chirped Airy-Gaussian vortex electron plasma (CAiGVEP) wave which constitutes the exact and continuous transition modes between the chirped Airy vortex and the chirped Gaussian vortex electron plasma wave. The intensity, the phase, and the angular momentum density flow of the CAiGVEP wave are discussed under different distribution factors and different chirp modes.
Keywords:  Airy-Gaussian wave      plasma wave      chirp  
Received:  19 May 2020      Revised:  15 July 2020      Accepted manuscript online:  28 July 2020
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108), the Science and Technology Program of Guangzhou City (Grant No. 2019050001), and the Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (Grant Nos. pdjh2020a0149 and pdjh2019a0127).
Corresponding Authors:  Corresponding author. E-mail: dmdeng@263.net   

Cite this article: 

Lican Wu(吴利灿), Jinhong Wu(吴锦鸿), Yujun Liu(刘煜俊), and Dongmei Deng(邓冬梅) Propagation properties of the chirped Airy-Gaussian vortex electron plasma wave 2020 Chin. Phys. B 29 125202

[1] Stix T H1992 Waves in plasmas pp. 1-566
[2] Salandrino A and Christodoulides D N2010 Opt. Lett. 35 124913
[3] Gupta N and Singh A Optik 127 8542 DOI: 10.1016/j.ijleo.2016.04.0452016
[4] Ouahid L, Dalil-Essakali L and Belafhal A Optik 154 58 DOI: 10.1016/j.ijleo.2017.10.0092018
[5] Dolai B and Prajapati R P2020 Phys. Lett. A 126462
[6] Berry M V and Balazs N L Am. J. Phys. 47 264 DOI: 10.1119/1.118551979
[7] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N2008 Opt. Lett. 33 90014
[8] Siviloglou G A and Christodoulides D N2007 Opt. Lett. 32 78349
[9] Wang L, Ji X, Deng Y, Li X, Wang T, Fan X and Yu H Opt. Commun. 441 190 DOI: 10.1016/j.optcom.2019.02.0582019
[10] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N Opt. Express 16 12880 DOI: 10.1364/OE.16.0128802008
[11] Baumgartl J, Mazilu M and Dholakia K Nat. Photon. 2 675 DOI: 10.1038/nphoton.2008.2012008
[12] Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S Nat. Commun. 4 2622 DOI: 10.1038/ncomms36222013
[13] Hu D, Liang Y, Chen Y, Chen Z H and Huang X G Opt. Commun. 404 196 DOI: 10.1016/j.optcom.2017.04.0362017
[14] Xu C J, Hu H C, Liu Y J and Deng D M Opt. Lett. 45 1451 DOI: 10.1364/OL.3897532020
[15] Bandres M A and Gutièrrez-Vega J C Opt. Express 15 16719 DOI: 10.1364/OE.15.0167192007
[16] Melinger J S, Gandhi S R, Hariharan A, Tull J X and Warren W S Phys. Rev. Lett. 68 2000 DOI: 10.1103/PhysRevLett.68.20001992
[17] Chremmos I and Giamalaki M2015 J. Opt. Sot. Am. A 32 867
[18] Shi X, Huang X, Deng Y, Tan C, Bai Y and Fu X Opt. Commun. 399 16 DOI: 10.1016/j.optcom.2017.04.0642017
[19] Xie J T, Zhang J B, Ye J R, Liu H, Liang Z Y, Long S J, Zhou K Z and Deng D M Opt. Express 26 5845 DOI: 10.1364/OE.26.0058452018
[20] Zhou K Z, Zhang J B, Mo H R, Chen J H, Yang X L, Lai Z Y, Chen X Y, Yang X B and Deng D M J. Opt. 20 075601 DOI: 10.1088/2040-8986/aac4c62018
[21] Chen S J, Lin G, Xie J T, Zhen Y, Ma S and Deng D M Opt. Commun. 430 364 DOI: 10.1016/j.optcom.2018.08.0742019
[22] Yang X Y, Hong S H, Liang Z Y and Deng D M Results in Physics 15 102691 DOI: 10.1016/j.rinp.2019.1026912019
[23] Mendonca J T Phys. Plasmas 19 112113 DOI: 10.1063/1.47690302012
[1] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[2] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[3] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[4] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[5] Assessment of cortical bone fatigue using coded nonlinear ultrasound
Duwei Liu(刘度为), Boyi Li(李博艺), Dongsheng Bi(毕东生), Tho N. H. T. Tran, Yifang Li(李义方), Dan Liu(刘丹), Ying Li(李颖), and Dean Ta(他得安). Chin. Phys. B, 2021, 30(9): 094301.
[6] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[7] Effect of symmetrical frequency chirp on pair production
Kun Wang(王焜), Xuehua Hu(胡学华), Sayipjamal Dulat, and Bai-Song Xie(谢柏松). Chin. Phys. B, 2021, 30(6): 060204.
[8] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[9] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[10] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[11] Interference effect of photoionization of hydrogen atoms by ultra-short and ultra-fast high-frequency chirped pulses
Ningyue Wang(王宁月), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(8): 083403.
[12] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[13] Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier
Zhen Guo(郭震), Lianghong Yu(於亮红), Wenqi Li(李文启), Zebiao Gan(甘泽彪), Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2019, 28(1): 014203.
[14] Detection performance improvement of photon counting chirped amplitude modulation lidar with response probability correction
Yi-Fei Sun(孙怿飞), Zi-Jing Zhang(张子静), Li-Yuan Zhao(赵丽媛), Wei-Min Sun(孙伟民), Yuan Zhao(赵远). Chin. Phys. B, 2018, 27(9): 094213.
[15] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
No Suggested Reading articles found!