Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104101    DOI: 10.1088/1674-1056/27/10/104101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Shim coil design for Halbach magnet by equivalent magnetic dipole method

Jia-Min Wu(吴嘉敏)1, Zheng Xu(徐征)1, Pan Guo(郭盼)2, Jin-Feng Qi(戚金凤)1, Yu-Cheng He(贺玉成)1
1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China;
2 School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Abstract  

Low-field nuclear magnetic resonance magnet (2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields. The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.

Keywords:  equivalent magnetic dipole method      shim coils      magnetic resonance      Halbach magnet  
Received:  18 May 2018      Revised:  12 June 2018      Accepted manuscript online: 
PACS:  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  02.60.Pn (Numerical optimization)  
Fund: 

Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB541602), the National Natural Science Foundation of China (Grant Nos. 51677008 and 51707028), and the Fundamental Research Funds of Central Universities, China (Grant No. 106112015CDJXY150003).

Corresponding Authors:  Zheng Xu, Pan Guo     E-mail:  xuzheng@cqu.edu.cn;guopan@cqnu.edu.cn

Cite this article: 

Jia-Min Wu(吴嘉敏), Zheng Xu(徐征), Pan Guo(郭盼), Jin-Feng Qi(戚金凤), Yu-Cheng He(贺玉成) Shim coil design for Halbach magnet by equivalent magnetic dipole method 2018 Chin. Phys. B 27 104101

[1] Windt C W, Soltner H, Van D, D and Blümler P 2011 J. Magn. Reson. 208 27
[2] Danieli E, Perlo J, Blümich B and Casanova F 2010 Ange. Chem. 49 4133
[3] Cooley C Z, Haskell M W, Cauley S F, Sappo C, Lapierre C D, Ha C G, Stockmann J P and Wald L L 2018 IEEE Trans. Magn. 54 5100112
[4] Tayler M C D and Sakellariou D 2017 J. Magn. Reson. 277 143
[5] Turner R 1993 Magn. Reson. Imag. 11 903
[6] Lu H, Jesmanowicz A, Li S J and Hyde J S 2004 Magn. Reson. Med. 51 158
[7] Villa M, Savini A and Mustarell P 1989 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, November 9-12, 1989, Seattle, WA USA, p. 605
[8] Crozier S and Moddrell D M 1995 Magn. Reson. Imag. 13 615
[9] Crozier S and Moddrell D M 1993 J. Magn. Reson. 103 354
[10] Adamiak K and Czaja A J 1994 IEEE Trans. Magn. 30 4311
[11] Sanchez H, Liu F, Trakic A, Weber E and Crozier S 2007 IEEE Trans. Magn. 43 3558
[12] Garrett M W 1951 J. Appl. Phys. 22 1091
[13] Compton R A U S Patent 4456881 1984-06-26
[14] Wong E, Jesmanowicz A and Hyde J S 1991 Magn. Reson. Med. 21 39
[15] Schenck J F, Hussain M A and Edelstein W A U S Pantent 4646024 1987-02-24
[16] Brideson M A, Forbes L K and Crozier S 2002 Con. Magn. Reson. 14 9
[17] Turner R 1986 J. Phys. D:Appl. Phys. 19 L147
[18] Liu W T, Zu D L and Tang X 2010 Chin. Phys. B 19 018701
[19] Xu Y, Chen Q, Zhang G, Pei Z and Yang X 2015 Appl. Magn. Reson. 46 823
[20] Lopez H S, Liu F, Poole M and Crozier S 2009 IEEE Trans. Magn. 45 767
[21] Liu W T, Casanova F and Blumich B 2012 Appl. Magn. Reson. 42 101
[22] Chu X, Jiang X H and Jiang J G 2005 Pro. CSEE 25 139 (in Chinese)
[23] Xu Z, Li X, Guo P and Wu J M 2018 Chin. Phys. B 27 058702
[24] Zhao W, Tang X Y and Liu Z W 2010 Trans. Chin. Elec. Soci. 25 6 (in Chinese)
[25] Anderson W A 1961 Rev. Sci. Instr. 32 241
[26] Brideson M A, Forbes L K and Crozier S 2002 Con. Magn. Reson. 14 9
[27] Feng C Z 1985 Static electromagnetics (Xi'an:Xi'an Jiaotong University Press) (in Chinese)
[28] While P T, Forbes L K and Crozier S 2011 IEEE Trans. Bio. Eng. 58 2418
[29] While P T, Korvink J G, Shah N J and Poole M S 2013 J. Magn. Reson. 235 85
[30] Nocedal J, Wright S J 1999 Numerical Optimization, 2nd edn., p. 419
[31] Chen S S, Xia T, Bi X, Miao Z Y, Yang P Q, Wang H Z and Dai S G 2017 Chin. J. Magn. Reson. 34 87
[32] Diehl P, Fluck E and Kosfeld R 1972 NMR Basic Principles Progress/Grundlagen und Fortschr, Vol. 7 (Berlin, Heidelberg:Springer-Verlag) p. 56
[1] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[2] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[5] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[6] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[7] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[8] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[9] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[10] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[11] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[12] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[13] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[14] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[15] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
No Suggested Reading articles found!