Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014501    DOI: 10.1088/1674-1056/ac2f2f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional clogging structures of granular spheres near hopper orifice

Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰)
Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Abstract  The characteristic clogging structures of granular spheres blocking three-dimensional granular flow through hopper outlet are analyzed based on packing structures reconstructed using magnetic resonance imaging techniques. Spheres in clogging structures are arranged in a way with typical features of load-bearing, such as more contacting bonds close to the horizontal plane and more mutually-stabilized contact configurations than packing structures away from the orifice. The requirement of load-bearing inevitably leads to the cooperativity of clogging structures with a correlation length of several particle diameters. This correlation length being comparable with the orifice diameter suggests that a clogging structure is composed of several mutually-stabilized structural motifs to span the orifice perimeter, instead of a collection of independent individual spheres to cover the whole orifice area. Accordingly, we propose a simple geometric model to explain the unexpected linear dependence of the average size of three-dimensional clogging structures on orifice diameter.
Keywords:  granular materials      clogging      magnetic resonance imaging  
Received:  27 July 2021      Revised:  07 September 2021      Accepted manuscript online:  13 October 2021
PACS:  45.70.-n (Granular systems)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  76.60.Pc (NMR imaging)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant Nos. 2018M641957 and 2019T120319), the National Natural Science Foundation of China (Grant No. 11904102), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Chengjie Xia     E-mail:  cjxia@phy.ecnu.edu.cn

Cite this article: 

Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰) Three-dimensional clogging structures of granular spheres near hopper orifice 2022 Chin. Phys. B 31 014501

[1] de Gennes P G 1999 Rev. Mod. Phys. 71 S374
[2] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[3] Liu A J and Nagel S R 1998 Nature 396 21
[4] Majmudar T S, Sperl M, Luding S and Behringer R P 2007 Phys. Rev. Lett. 98 058001
[5] Liu A J and Nagel S R 2010 Annu. Rev. Conden. Matter Phys. 1 347
[6] Zuriguel I 2014 Pap. Phys. 6 060014
[7] van de Laar T, ten Klooster S, Schroen K and Sprakel J 2016 Sci. Rep. 6 28450
[8] Stoop R L and Tierno P 2018 Commun. Phys. 1 68
[9] Garcimartin A, Pastor J M, Ferrer L M, Ramos J J, Martin-Gomez C and Zuriguel I 2015 Phys. Rev. E 91 022808
[10] Patterson G A, Fierens P I, Jimka F S, Konig P G, Garcimartin A, Zuriguel I, Pugnaloni L A and Parisi D R 2017 Phys. Rev. Lett. 119 248301
[11] Mohammadi M, Harth K, Puzyrev D, Hanselka T, Trittel T and Stannarius R 2020 New J. Phys. 22 123025
[12] Delarue M, Hartung J, Schreck C, Gniewek P, Hu L, Herminghaus S and Hallatschek O 2016 Nat. Phys. 12 762
[13] Gella D, Maza D, Zuriguel I, Ashour A, Arevalo R and Stannarius R 2017 Phys. Rev. Fluids 2 084304
[14] Lopez-Rodriguez D, Gella D, To K, Maza D, Garcimartin A and Zuriguel I 2019 Phys. Rev. E 99 032901
[15] Thomas C C and Durian D J 2013 Phys. Rev. E 87 052201
[16] Pournin L, Ramaioli M, Folly P and Liebling T M 2007 Euro. Phys. J. E 23 229
[17] Goldberg E, Carlevaro C M and Pugnaloni L A 2018 J. Stat. Mech. 2018 113201
[18] Mankoc C, Garcimartin A, Zuriguel I, Maza D and Pugnaloni L A 2009 Phys. Rev. E 80 011309
[19] Aguirre M A, Grande J G, Calvo A, Pugnaloni L A and Geminard J C 2010 Phys. Rev. Lett. 104 238002
[20] Dorbolo S, Maquet L, Brandenbourger M, Ludewig F, Lumay G, Caps H, Vandewalle N, Rondia S, Melard M, van Loon J, Dowson A and Vincent-Bonnieu S 2013 Granular Matter 15 263
[21] Arevalo R, Zuriguel I, Maza D and Garcimartin A 2014 Phys. Rev. E 89 042205
[22] Gella D, Zuriguel I and Maza D 2018 Phys. Rev. Lett. 121 138001
[23] To K, Lai P Y and Pak H K 2001 Phys. Rev. Lett. 86 71
[24] To K W and Lai P Y 2002 Phys. Rev. E 66 011308
[25] Lozano C, Lumay G, Zuriguel I, Hidalgo R C and Garcimartin A 2012 Phys. Rev. Lett. 109 068001
[26] Nicolas A, Garcimartin A and Zuriguel I 2018 Phys. Rev. Lett. 120 198002
[27] Merrigan C, Birwa S K, Tewari S and Chakraborty B 2018 Phys. Rev. E 97 040901
[28] Guerrero B V, Pugnaloni L A, Lozano C, Zuriguel I and Garcimartin A 2018 Phys. Rev. E 97 042904
[29] Guerrero B V, Chakraborty B, Zuriguel I and Garcimartin A 2019 Phys. Rev. E 100 032901
[30] Borzsonyi T, Somfai E, Szabo B, Wegner S, Mier P, Rose G and Stannarius R 2016 New J. Phys. 18 093017
[31] Ashour A, Wegner S, Trittel T, Borzsonyi T and Stannarius R 2017 Soft Matter 13 402
[32] Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clement E, Maza D, Pagonabarraga I and Garcimartin A 2014 Sci. Rep. 4 7324
[33] To K W. 2005 Phys. Rev. E 71 060301
[34] Zuriguel I, Garcimartin A, Maza D, Pugnaloni L A and Pastor J M 2005 Phys. Rev. E 71 051303
[35] Janda A, Zuriguel I, Garcimartin A, Pugnaloni L A and Maza D 2008 Europhys. Lett. 84 44002
[36] Thomas C C and Durian D J 2015 Phys. Rev. Lett. 114 178001
[37] Cross R 2020 Phys. Educ. 55 055013
[38] Frahm J, Haase A and Matthaei D 1986 J. Comp. Ass. Tomo. 10 363
[39] Griswold M A, Jakob P M, Heidemann R M, Nittka M, Jellus V, Wang J M, Kiefer B and Haase A 2002 Magn. Reson. Med. 47 1202
[40] Aste T, Saadatfar M and Senden T J 2005 Phys. Rev. E 71 061302
[41] Garcimartin A, Zuriguel I, Pugnaloni L A and Janda A 2010 Phys. Rev. E 82 031306
[42] Longjas A, Monterola C and Saloma C 2009 J. Stat. Mech. 2009 P05006
[43] Zhou J and Dinsmore A D 2009 J. Stat. Mech. 2009 L05001
[44] Junyao T, Sagdiphour S and Behringer R P 2009 AIP Conf. Proc. 1145 515
[45] Mehta A, Barker G C and Luck J M 2004 J. Stat. Mech. 2004 P10014
[46] Jenkins M C, Haw M D, Barker G C, Poon W C K and Egelhaaf S U 2011 Soft Matter 7 684
[47] Majmudar T S and Behringer R P 2005 Nature 435 1079
[1] Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink. Chin. Phys. B, 2018, 27(5): 050201.
[2] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[3] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[4] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[5] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[6] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
[7] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[8] Self-assembled superparamagnetic nanoparticles as MRI contrast agents–A review
Su Hong-Ying (苏红莹), Wu Chang-Qiang (吴昌强), Li Dan-Yang (李丹阳), Ai Hua (艾华). Chin. Phys. B, 2015, 24(12): 127506.
[9] Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing (李敬), Cai Cong-Bo (蔡聪波), Chen Lin (陈林), Chen Ying (陈颖), Qu Xiao-Bo (屈小波), Cai Shu-Hui (蔡淑惠). Chin. Phys. B, 2015, 24(10): 108703.
[10] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[11] Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications
Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳). Chin. Phys. B, 2014, 23(7): 078704.
[12] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
[13] Parallel variable-density spiral imaging using nonlocal total variation reconstruction
Fang Sheng (方晟), Guo Hua (郭华). Chin. Phys. B, 2014, 23(5): 057401.
[14] Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer
Yue Xiu-Li (岳秀丽), Ma Fang (马放), Dai Zhi-Fei (戴志飞). Chin. Phys. B, 2014, 23(4): 044301.
[15] Multi-objective optimization of gradient coil for benchtop magnetic resonance imaging system with high-resolution
Wang Long-Qing (王龙庆), Wang Wei-Min (王为民). Chin. Phys. B, 2014, 23(2): 028703.
No Suggested Reading articles found!