Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100204    DOI: 10.1088/1674-1056/27/10/100204
GENERAL Prev   Next  

Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays

Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生)
School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  

In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain (FDTD) method and the unconditionally stable locally one-dimensional (LOD) FDTD is developed for analyzing the periodic metallic nanoparticle arrays. The dispersion of the metal, caused by the evanescent wave propagating along the metal-dielectric interface, is expressed by the Drude model and solved with a generalized auxiliary differential equation (ADE) technique. In the sub-gridding scheme, the ADE-FDTD is applied to the global coarse grids while the ADE-LOD-FDTD is applied to the local fine grids. The time step sizes in the fine-grid region and coarse-grid region can be synchronized, and thus obviating the temporal interpolation of the fields in the time-marching process. Numerical examples about extraordinary optical transmission through the periodic metallic nanoparticle array are provided to show the accuracy and efficiency of the proposed method.

Keywords:  locally one-dimensional finite-difference time-domain      metallic nanoparticle      sub-gridding      surface plasmon polaritons  
Received:  27 April 2018      Revised:  30 July 2018      Accepted manuscript online: 
PACS:  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61471105 and 61331007).

Corresponding Authors:  Wei Shao     E-mail:  weishao@uestc.edu.cn

Cite this article: 

Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生) Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays 2018 Chin. Phys. B 27 100204

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[3] Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
[4] Khanikaev A B, Mousavi S H, Shvets G and Kivshar Y S 2010 Phys. Rev. Lett. 105 126804
[5] Moreno E, Martin-Moreno L and Garcia-Vidal F J 2006 J. Opt. A Pure Appl. Opt. 8 S94
[6] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[7] Liu H T and Lalanne P 2008 Nature 452 728
[8] Genet C and Ebbesen T W 2007 Nature 445 39
[9] Gordon R, Sinton D, Kavanagh K L and Brolo A G 2008 Acc. Chem. Res. 41 1049
[10] Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
[11] Li Q B, Wu R X, Yang Y and Sun H L 2013 Chin. Phys. Lett. 30 074208
[12] Zhuan S X, Ma X K 2012 Acta Phys. Sin. 61 110206 (in Chinese)
[13] Li L Q, Shi Y X, Wang F and Wei B 2012 Acta Phys. Sin. 61 125201 (in Chinese)
[14] Taflove A and Hagness S C 2000 Computational Electrodynamics:The Finite-Difference Time-Domain Method (Norwood, MA:Artech House)
[15] Namiki T 1999 IEEE Trans. Microw. Theory Tech. 47 2003
[16] Zheng F H, Chen Z Z and Zhang J Z 1999 IEEE Microw. Guided Wave Lett. 9 441
[17] Lee J and Fornberg B 2003 J. Comput. Appl. Math. 158 485
[18] Lee J and Fornberg B 2004 J. Comput. Appl. Math. 166 497
[19] Gao L, Zhang B and Liang D 2007 J. Comput. Appl. Math. 205 207
[20] Shibayama J, Muraki M, Yamauchi J and Nakano H 2005 Electron. Lett. 41 1046
[21] Nascimento V E D, Borges B H V and Teixeira F L 2006 IEEE Microw. Wireless Compon. Lett. 16 398
[22] Wei X K, Shao W, Shi S B, Zhang Y and Wang B Z 2015 Chin. Phys. B 24 070203
[23] Sun G and Trueman C W 2004 IEEE Trans. Anten. Propag. 52 2963
[24] Sun G and Truneman C W 2006 IEEE Trans. Microw. Theory Tech. 54 2275
[25] Shi S B, Shao W, Wei X K, Yang X S and Wang B Z 2016 IEEE Microw. Theory Tech. 64 4082
[26] Ahmed I, Chua E K, Li E P and Chen Z Z 2008 IEEE Trans. Anten. Propag. 56 3596
[27] Zheng F and Chen Z 2001 IEEE Trans. Microw. Theory Tech. 49 1006
[28] Ahmed I, Chun E K and Li E P 2010 IEEE Trans. Anten. Propag. 58 3983
[29] Chevalier M W, Luebbers R J and Cable V P 1997 IEEE Trans. Anten. Propag. 45 411
[30] Wang B Z, Wang Y, Yu W and Mittra R 2001 IEEE Trans. Adv. Packag. 24 528
[31] Gray S K and Kupka T 2003 Phys. Rev. B 68 045415
[32] Liang T L, Shao W, Shi S B and Ou H 2016 IEEE Photon. J. 8 7804710
[33] Kulas L and Mrozowski M 2008 Proc. 38$th European Microwave Conf. 658
[34] Palik E D 1982 Handbook of optical constants in solids (Academic)
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[7] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[8] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[9] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[10] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[14] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[15] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
No Suggested Reading articles found!