Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017303    DOI: 10.1088/1674-1056/27/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Closed-form internal impedance model and characterization of mixed carbon nanotube bundles for three-dimensional integrated circuits

Qijun Lu(卢启军), Zhangming Zhu(朱樟明), Yintang Yang(杨银堂), Ruixue Ding(丁瑞雪), Yuejin Li(李跃进)
School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian distribution, is proposed in this paper. It can appropriately capture the skin effect as well as the temperature effect of mixed CNT bundles. The results of the closed-form expression and the numerical calculation are compared with various mean diameters, standard deviations, and temperatures. It is shown that the proposed model has very high accuracy in the whole frequency range considered, with maximum errors of 1% and 2.3% for the resistance and the internal inductance, respectively. Moreover, by using the proposed model, the high-frequency electrical characteristics of mixed CNT bundles are deeply analyzed to provide helpful design guidelines for their application in future high-performance three-dimensional integrated circuits.
Keywords:  mixed carbon nanotube (CNT) bundle      internal impedance      closed-form expression      complex effective conductivity method  
Received:  06 August 2017      Revised:  03 October 2017      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  81.07.De (Nanotubes)  
  85.35.Kt (Nanotube devices)  
Fund: Project supported by the National Science and Technology Major Project of China (Grant No. 2015ZX03001004) and the National Natural Science Foundation of China (Grant Nos. 61604113, 61625403, 61334003, 61376039, 61574104, and 61474088).
Corresponding Authors:  Qijun Lu     E-mail:  luqijun2000@126.com,qjlu@xidian.edu.cn

Cite this article: 

Qijun Lu(卢启军), Zhangming Zhu(朱樟明), Yintang Yang(杨银堂), Ruixue Ding(丁瑞雪), Yuejin Li(李跃进) Closed-form internal impedance model and characterization of mixed carbon nanotube bundles for three-dimensional integrated circuits 2018 Chin. Phys. B 27 017303

[1] Hosiny N H and Badawi 2015 Chin. Phys. B 24 105101
[2] Zhang Q, Li K W, Fan Q X, Xia X G, Zhang N, Xiao Z J, Zhou W B, Yang F, Wang Y C, Liu H P and Zhou W Y 2017 Chin. Phys. B 26 028802
[3] Bafandeh N, Larijani M M, Shafiekhani, Hantehzadeh M R and Sheikh N 2016 Chin. Phys. Lett. 33 117801
[4] Yang J Q, Li X J, Liu C M, Ma G L and Gao F 2015 Chin. Phys. B 24 116103
[5] Li H, Yin W Y, Banerjee K and Mao J F 2008 IEEE Trans. Electron Devices 55 1328
[6] Ahmad Z, Karimov K S and Touati F 2016 Chin. Phys. B 25 028801
[7] Giustiniani A, Tucci V and Zamboni W 2010 IEEE Trans. Electron Devices 57 1978
[8] Sarto M S, Tamburrano A and Amore M D 2009 IEEE Trans. Nan-otechnol. 8 214
[9] Li H and Banerjee K 2009 IEEE Trans. Electron Devices 56 2202
[10] Qian L B, Zhu Z M, Xia Y S, Ding R X and Yang Y T 2014 Chin. Phys. B 23 038402
[11] Liu X X, Zhu Z M, Yang Y T, Ding R X and Li Y J 2016 Chin. Phys. B 25 118401
[12] Liu E X, Li E P, Ewe W B, Lee H M, Lim T G and Gao S 2011 IEEE Trans. Microw. Theory Techn. 59 1454
[13] Vollebregt S, Banerjee S, Tichelaar F D and Ishihara R 2015 Proceedings of the IEEE International Interconnect Technology Conference and IEEE Materials for Advanced Metallization Conference, May 18-21, 2015, Grenoble, France, p. 281
[14] Sofela S O, Younes H, Jelbuldina M, Saadat I and Ghaferi A A 2015 Proceedings of the IEEE International Interconnect Technology Conference and IEEE Materials for Advanced Metallization Conference, May 18-21, 2015, Grenoble, France, p. 289
[15] Ghosh K, Yap C C, Tay B K and Tan C S 2013 Proceedings of the IEEE International 3D Systems Integration Conference, October 2-4, 2013, San Francisco, CA, USA, p. 1
[16] Wang T, Chen S, Jiang D, Fu Y, Jeppson K, Ye L and Liu J 2012 IEEE Electron Device Lett. 33 420
[17] Zhao W S, Yin W Y and Guo Y X 2012 IEEE Trans. Electromagn. Compat. 54 149
[18] Liu Y F, Zhao W S, Yong Z, Fang Y and Yin W Y 2014 IEEE Trans. Nanotechnol. 13 488
[19] Xu C, Li H, Suaya R and Banerjee K 2010 IEEE Trans. Electron Devices 57 3405
[20] Zhu L B, Xu J W, Xiu Y H, Sun Y Y, Hess D W and Wong C P 2006 Carbon 44 253
[21] McEuen P L, Fuhrer M S and Park H 2002 IEEE Trans. Nanotechnol. 1 78
[22] Li H J, Lu W G, Li J J, Bai X D and Gu C Z 2005 Phys. Rev. Lett. 95 086601
[23] Li J, Ye Q, Casssell A, Ng H T, Stevens R, Han J and Meyyappan M 2003 Appl. Phys. Lett. 82 2491
[24] Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M and Awano Y 2006 Proceedings of the IEEE International Interconnect Technology Conference, June 5-7, 2006, Burlingame, CA, USA, p. 230
[25] Cheung C L, Kurtz A, Park H and Lieber C M 2002 J. Phys. Chem. 106 2429
[26] Haruehanroengra S and Wang W 2007 IEEE Electron Device Lett. 28 756
[27] Wang W, Haruehanroengra S, Shang L and Liu M 2007 IET Micro Nano Lett. 2 35
[28] Subash S, Kolar J and Chowdhury M H 2013 IEEE Trans. Nanotech-nol. 12 3
[29] Qian L B, Xia Y S and Shi G 2016 IEEE Trans. Nanotechnol. 15 155
[30] Naeemi A and Meindl J D 2006 IEEE Electron Device Lett. 27 338
[31] Bowling S R, Khasawneh M T, Kaewkuekool S and Cho B R 2009 J. Ind. Eng. Manage. 2 114
[32] Schelkunoff S A 1934 Bell Syst. Tech. J. 13 532
[33] Wedepohl L M and Wilcox D J 1973 Proc. Inst. Elect. Eng. 120 253
[34] Chiariello A G, Maffucci A and Miano G 2013 IEEE Trans. Comp., Packag. Manuf. Technol. 3 1926
[35] Qian L B, Xia Y S, Shi G, Wang J, Die Y Y and Du S M 2017 IEEE Trans. Nanotechnol. 16 901
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[4] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[5] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[6] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[7] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[8] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[13] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[14] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[15] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
No Suggested Reading articles found!