Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017103    DOI: 10.1088/1674-1056/27/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)

Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军)
School of Science and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China
Abstract  The electronic structures, magnetic properties, half-metallicity, and mechanical properties of half-Heulser compounds CoCrZ (Z=S, Se, and Te) were investigated using first-principles calculations within generalized gradient approximation based on the density function theory. The half-Heusler compounds show half-metallic properties with a half-metallic gap of 0.15 eV for CoCrS, 0.10 eV for CoCrSe, and 0.31 eV for CoCrTe at equilibrium lattice constant, respectively. The total magnetic moments are 3.00μB per formula unit, which agrees well with the Slater-Pauling rule. The half-metallicity, elastic constants, bulk modulus, shear modulus, Pough's ratio, Frantesvich ratio, Young's modulus, Poisson's ratio, and Debye temperature at equilibrium lattice constant and versus lattice constants are reported for the first time. The results indicate that the half-Heulser compounds CoCrZ (Z=S, Se, and Te) maintain the perfect half-metallic and mechanical stability within the lattice constants range of 5.18-5.43 Å for CoCrS, 5.09-5.61 Å for CoCrSe, and 5.17-6.42 Å for CoCrTe, respectively.
Keywords:  half-Heusler      half-metallicity      elastic constants      first-principles  
Received:  03 November 2017      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  75.50.-y (Studies of specific magnetic materials)  
  62.20.de (Elastic moduli)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647133 and 11674113), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2017CFB740 and 2014CFB631), the Scientific Research Items Foundation of Hubei Educational Committee, China (Grant Nos. Q20141802, Q20161803, B2016091, and D20171803), and Hubei Provincial Collaborative Innovation Center for Optoelectronics, China.
Corresponding Authors:  Hai-Ming Huang     E-mail:  smilehhm@163.com

Cite this article: 

Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军) Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te) 2018 Chin. Phys. B 27 017103

[1] Lv S H, Li H P, Liu X J, Han D M, Wu Z J and Meng J 2010 J. Phys. Chem. C 114 16710
[2] Zhang M, Dai X F, Hu H M, Liu G D, Cui Y T, Liu Z H, Chen J G, Wang J L and Wu G H 2003 J. Phys. -Condens. Mat. 15 7891
[3] Luo H Z, Zhu Z Y, Liu G D, Xu S F, Wu G H, Liu H Y, Qu J P and Li Y X 2008 J. Magn. Magn. Mater. 320 421
[4] Zhang W Y, Kharel P S, Skomski R, Valloppilly S, Li X Z and Sellmyer D J 2016 AIP Adv. 6 056218
[5] Sakamaki M, Konishi T and Ohta Y 2009 Phys. Rev. B 80 024416
[6] Hasegawa K, Isobe M, Yamauchi T, Ueda H, Yamaura J, Gotou H, Yagi T, Sato H and Ueda Y 2009 Phys. Rev. Lett. 103 146403.
[7] Baral M, Banik S, Chakrabarti A, Phase D M and Ganguli T 2015 J. Alloys Compd. 645 112
[8] Kong B, Chen X R, Yu J X and Cai C L 2011 J. Alloys Compd. 509 2611
[9] Jamal M, Abu-Jafar M S and Resha A H 2016 J. Alloys Compd. 667 151
[10] Hirohata A and Takanashi K 2014 J. Phys. D-Appl. Phys. 47 193001
[11] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 134428
[12] Rozale H, Lakdja A, Amar A, Chahed A and Benhelal O 2013 Comput. Mater. Sci. 69 229
[13] Gao Y C, Wang X T and Habib R 2015 Chin. Phys. B 24 067102
[14] de Groot R A, Mueller F M, Van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[15] Sattar Z A, Rashid M, Hashmi M R, Ahmad S A, Imran M and Hussain F 2016 Chin. Phys. B 25 107402
[16] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[17] Saito T, Katayama T, Ishikawa T, Yamamoto M, Asakura D, Koide T, Miura Y and Shirai M 2010 Phys. Rev. B 81 144417
[18] Luo H, Liu H, Yu X, Li Y, Zhu W, Wu G, Zhu X, Jiang C and Xu H 2009 J. Magn. Magn. Mater. 321 1321
[19] Missoum A, Seddik T, Murtaza G, Khenata R, Bouhemadou A, Al-Douri Y, Abdiche A, Meradji H and Baltache H 2014 Can. J. Phys. 92 1105
[20] Yao Z Y, Zhang Y S and Yao K L 2012 Appl. Phys. Lett. 101 062402
[21] Yao Z Y, Sun L, Pan M M and Sun S S 2016 Acta Phys. Sin. 65 127501 (in Chinese)
[22] Huang H M, Luo S J and Xiong Y C 2017 J. Magn. Magn. Mater. 438 5
[23] Feng L, Liu E K, Zhang W X, Wang W H and Wu G H 2014 J. Magn. Magn. Mater. 351 92
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Perdew J P and Wang Y 1986 Phys. Rev. B 33 8800
[28] Nanda B R K and Dasgupta I 2003 J. Phys. -Condens. Mat. 15 7307
[29] Murnaghan F D 1944 Natl. Acad. Sci. 30 244
[30] Li Y, Yuan H K, Xia J, Zhong M M, Kuang A L, Wang G Z, Zheng X R and Chen H 2015 Eur. Phys. J. Appl. Phys. 70 31001
[31] Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951
[32] Chen X R, Zhong M M, Feng Y, Zhou Y, Yuan H K and Chen H 2015 Phys. Status Solidi B 252 2830
[33] Yu W Y, Wang N, Xiao X B, Tang B Y, Peng L M and Ding W J 2009 Solid State Sci. 11 1400
[34] Pugh S F 1954 Philos. Mag. A 45 823
[35] Degheidy A R and Elkenany E B 2017 Chin. Phys. B 26 086103
[36] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[37] Li X F, Chen X R, Meng C M and Ji G F 2006 Solid State Commun. 139 197
[38] Yip S, Li J, Tang M and Wang J 2001 Mater. Sci. Eng. A 317 236
[39] Gu J B, Wang C J, Zhang W X, Sun B, Liu G Q, Liu D D and Yang X D 2016 Chin. Phys. B 25 126103
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!