Special Issue:
TOPICAL REVIEW — Soft matter and biological physics
|
TOPICAL REVIEW—Soft matter and biological physics |
Prev
Next
|
|
|
Control water molecules across carbon-based nanochannels |
Xianwen Meng(孟现文)1, Jiping Huang(黄吉平)2,3 |
1 School of Physics, China University of Mining and Technology, Xuzhou 221116, China;
2 Department of Physics, Fudan University, Shanghai 200433, China;
3 State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract It is important to know the mechanisms of water molecules across carbon-based nanochannels, which is not only beneficial for understanding biological activities but also for designing various smart devices. Here we review the recent progress of research for water transfer across carbon-based nanochannels. In this review, we summarize the recent methods which can affect water molecules across these nanochannels. The methods include exterior factors (i.e., dipolar molecules and gradient electric fields) and interior factors (namely, cone-shaped structures, nonstraight nanochannels, and channel defects). These factors can control water permeation across nanochannels efficiently.
|
Received: 30 August 2017
Revised: 30 October 2017
Accepted manuscript online:
|
PACS:
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2015QNA48), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150173), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1445100), and the National Natural Science Foudnation of China (Grant Nos. 11725521 and 11605285). |
Corresponding Authors:
Xianwen Meng, Jiping Huang
E-mail: xwmeng@cumt.edu.cn;jphuang@fudan.edu.cn
|
Cite this article:
Xianwen Meng(孟现文), Jiping Huang(黄吉平) Control water molecules across carbon-based nanochannels 2018 Chin. Phys. B 27 013101
|
[1] |
Agre P, Preston G M, Smith B L, Jung J S, Raina S, Moon C, Guggino W B and Nielsen S 1993 Am. J. Physiol. 265 463
|
[2] |
Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
|
[3] |
Kolesnikov A, Zanotti J and Loong C 2004 Phys. Rev. Lett. 93 035503
|
[4] |
Zahab A, Spina L, Poncharal P and Marliere C 2000 Phys. Rev. B 62 10000
|
[5] |
Cambre S, Schoeters B, Luyckx S, Goovaerts E and Wenseleers W 2010 Phys. Rev. Lett. 104 207401
|
[6] |
Lu H J, Li J Y, Gong X J, Wan R Z, Zeng L and Fang H P 2008 Phys. Rev. B 77 174115
|
[7] |
Su J Y and Guo H X 2011 ACS Nano 5 351
|
[8] |
Li J Y, Gong X J, Lu H J, Li D and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
|
[9] |
Meng X W, Wang Y and Huang J P 2011 J. Phys. Chem. B 115 4768
|
[10] |
Kalra S, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
|
[11] |
Gong X J, Li J Y, Wan R Z, Lu H J, Wang S and Fang H P 2008 Phys. Rev. Lett. 101 257801
|
[12] |
Lee K H and Sinnott S B 2005 Nano Lett. 5 793
|
[13] |
Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V and Bachas L G 2004 Science 303 62
|
[14] |
Service R F 2006 Science 313 1088
|
[15] |
Chaudhury M K and Whitesides G M 1992 Science 256 1539
|
[16] |
Linke H, Alemán B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P and Stout A 2006 Phys. Rev. Lett. 96 154502
|
[17] |
Wan R Z, Li J Y, Lu H J and Fang H P 2005 J. Am. Chem. Soc. 127 7166
|
[18] |
Gao Y, Huang J P, Liu Y M, Gao L, Yu K W and Zhang X 2010 Phys. Rev. Lett. 104 034501
|
[19] |
Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 13275
|
[20] |
Kosztin I and Schulten K 2004 Phys. Rev. Lett. 93 238102
|
[21] |
Siwy Z, Kosinska I D, Fulinski A and Martin C R 2005 Phys. Rev. Lett. 94 048102
|
[22] |
Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A and Fujiyoshi Y 2001 Nature 409 1047
|
[23] |
Meng X W and Huang J P 2013 Phys. Rev. E 88 014104
|
[24] |
Han J, Anantram M P, Jaffe R L, Kong J and Dai H 1998 Phys. Rev. B 57 14983
|
[25] |
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
|
[26] |
Aubuchon J F, Chen L H, Gapin A I, Kim D W, Daraio C and Jin S H 2004 Nano Lett. 4 1781
|
[27] |
Zhou D and Seraphin S 1995 Chem. Phys. Lett. 238 286
|
[28] |
Qiu T, Meng X W and Huang J P 2015 J. Phys. Chem. B 119 1496
|
[29] |
Nardelli M B, Fattebert J L, Orlikowski D, Roland C, Zhao Q and Bernholc J 2000 Carbon 38 1703
|
[30] |
Mawhinney D B, Naumenko V and Smalley R E 2000 Chem. Phys. Lett. 324 213
|
[31] |
Charlier J C, Ebbesen T W and Lambin P 1996 Phys. Rev. B 53 11108
|
[32] |
Nardelli M B, Yakobson B I and Bernholc J 1998 Phys. Rev. Lett. 81 4656
|
[33] |
Komorowski P G and Cottan M G 2015 Int. J. Mod. Phys. B 29 1550074
|
[34] |
Li S Y, Xiu P, Lu H J, Gong X J, Wu K F, Wan R Z and Fang H P 2008 Nanotechnology 19 105711
|
[35] |
Gholizadeh R and Yu Y X 2014 J. Phys. Chem. C 118 28274
|
[36] |
Zambrano H A, Walther J H, Koumoutsakos P and Sbalzarini I F 2009 Nano Lett. 9 66
|
[37] |
Zuo G C, Shen R and Guo W L 2011 Nano Lett. 11 5297
|
[38] |
Qiao R and Aluru N R 2003 Nano Lett. 3 1013
|
[39] |
Falk K, Sedlmeier F, Joly L, Netz R R and Bocquet L 2010 Nano Lett. 10 4067
|
[40] |
Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
|
[41] |
Pascal T A, Goddard W A and Jung Y S 2011 Proc. Natl. Acad. Sci. USA 108 11794
|
[42] |
Mikami F, Matsuda K, Kataura H and Maniwa Y 2009 ACS Nano 3 1279
|
[43] |
Kim B M, Qian S and Bau H H 2005 Nano Lett. 5 873
|
[44] |
Meng X W and Huang J P 2016 Int. J. Mod. Phys. B 30 1650019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|