Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013101    DOI: 10.1088/1674-1056/27/1/013101
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPICAL REVIEW—Soft matter and biological physics Prev   Next  

Control water molecules across carbon-based nanochannels

Xianwen Meng(孟现文)1, Jiping Huang(黄吉平)2,3
1 School of Physics, China University of Mining and Technology, Xuzhou 221116, China;
2 Department of Physics, Fudan University, Shanghai 200433, China;
3 State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
Abstract  

It is important to know the mechanisms of water molecules across carbon-based nanochannels, which is not only beneficial for understanding biological activities but also for designing various smart devices. Here we review the recent progress of research for water transfer across carbon-based nanochannels. In this review, we summarize the recent methods which can affect water molecules across these nanochannels. The methods include exterior factors (i.e., dipolar molecules and gradient electric fields) and interior factors (namely, cone-shaped structures, nonstraight nanochannels, and channel defects). These factors can control water permeation across nanochannels efficiently.

Keywords:  carbon nanotube      water molecules      flow enhancement      confinement  
Received:  30 August 2017      Revised:  30 October 2017      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2015QNA48), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150173), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1445100), and the National Natural Science Foudnation of China (Grant Nos. 11725521 and 11605285).

Corresponding Authors:  Xianwen Meng, Jiping Huang     E-mail:  xwmeng@cumt.edu.cn;jphuang@fudan.edu.cn

Cite this article: 

Xianwen Meng(孟现文), Jiping Huang(黄吉平) Control water molecules across carbon-based nanochannels 2018 Chin. Phys. B 27 013101

[1] Agre P, Preston G M, Smith B L, Jung J S, Raina S, Moon C, Guggino W B and Nielsen S 1993 Am. J. Physiol. 265 463
[2] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[3] Kolesnikov A, Zanotti J and Loong C 2004 Phys. Rev. Lett. 93 035503
[4] Zahab A, Spina L, Poncharal P and Marliere C 2000 Phys. Rev. B 62 10000
[5] Cambre S, Schoeters B, Luyckx S, Goovaerts E and Wenseleers W 2010 Phys. Rev. Lett. 104 207401
[6] Lu H J, Li J Y, Gong X J, Wan R Z, Zeng L and Fang H P 2008 Phys. Rev. B 77 174115
[7] Su J Y and Guo H X 2011 ACS Nano 5 351
[8] Li J Y, Gong X J, Lu H J, Li D and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[9] Meng X W, Wang Y and Huang J P 2011 J. Phys. Chem. B 115 4768
[10] Kalra S, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
[11] Gong X J, Li J Y, Wan R Z, Lu H J, Wang S and Fang H P 2008 Phys. Rev. Lett. 101 257801
[12] Lee K H and Sinnott S B 2005 Nano Lett. 5 793
[13] Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V and Bachas L G 2004 Science 303 62
[14] Service R F 2006 Science 313 1088
[15] Chaudhury M K and Whitesides G M 1992 Science 256 1539
[16] Linke H, Alemán B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P and Stout A 2006 Phys. Rev. Lett. 96 154502
[17] Wan R Z, Li J Y, Lu H J and Fang H P 2005 J. Am. Chem. Soc. 127 7166
[18] Gao Y, Huang J P, Liu Y M, Gao L, Yu K W and Zhang X 2010 Phys. Rev. Lett. 104 034501
[19] Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 13275
[20] Kosztin I and Schulten K 2004 Phys. Rev. Lett. 93 238102
[21] Siwy Z, Kosinska I D, Fulinski A and Martin C R 2005 Phys. Rev. Lett. 94 048102
[22] Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A and Fujiyoshi Y 2001 Nature 409 1047
[23] Meng X W and Huang J P 2013 Phys. Rev. E 88 014104
[24] Han J, Anantram M P, Jaffe R L, Kong J and Dai H 1998 Phys. Rev. B 57 14983
[25] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
[26] Aubuchon J F, Chen L H, Gapin A I, Kim D W, Daraio C and Jin S H 2004 Nano Lett. 4 1781
[27] Zhou D and Seraphin S 1995 Chem. Phys. Lett. 238 286
[28] Qiu T, Meng X W and Huang J P 2015 J. Phys. Chem. B 119 1496
[29] Nardelli M B, Fattebert J L, Orlikowski D, Roland C, Zhao Q and Bernholc J 2000 Carbon 38 1703
[30] Mawhinney D B, Naumenko V and Smalley R E 2000 Chem. Phys. Lett. 324 213
[31] Charlier J C, Ebbesen T W and Lambin P 1996 Phys. Rev. B 53 11108
[32] Nardelli M B, Yakobson B I and Bernholc J 1998 Phys. Rev. Lett. 81 4656
[33] Komorowski P G and Cottan M G 2015 Int. J. Mod. Phys. B 29 1550074
[34] Li S Y, Xiu P, Lu H J, Gong X J, Wu K F, Wan R Z and Fang H P 2008 Nanotechnology 19 105711
[35] Gholizadeh R and Yu Y X 2014 J. Phys. Chem. C 118 28274
[36] Zambrano H A, Walther J H, Koumoutsakos P and Sbalzarini I F 2009 Nano Lett. 9 66
[37] Zuo G C, Shen R and Guo W L 2011 Nano Lett. 11 5297
[38] Qiao R and Aluru N R 2003 Nano Lett. 3 1013
[39] Falk K, Sedlmeier F, Joly L, Netz R R and Bocquet L 2010 Nano Lett. 10 4067
[40] Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
[41] Pascal T A, Goddard W A and Jung Y S 2011 Proc. Natl. Acad. Sci. USA 108 11794
[42] Mikami F, Matsuda K, Kataura H and Maniwa Y 2009 ACS Nano 3 1279
[43] Kim B M, Qian S and Bau H H 2005 Nano Lett. 5 873
[44] Meng X W and Huang J P 2016 Int. J. Mod. Phys. B 30 1650019
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[7] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[8] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[9] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[10] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[11] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[12] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[13] Speedup of self-propelled helical swimmers in a long cylindrical pipe
Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳). Chin. Phys. B, 2022, 31(1): 014702.
[14] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[15] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
No Suggested Reading articles found!