Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010304    DOI: 10.1088/1674-1056/ac11cf
GENERAL Prev   Next  

Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes

Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋)
School of Sciences, Qingdao University of Technology, Qingdao 266033, China
Abstract  Quantum error-correction codes are immeasurable resources for quantum computing and quantum communication. However, the existing decoders are generally incapable of checking node duplication of belief propagation (BP) on quantum low-density parity check (QLDPC) codes. Based on the probability theory in the machine learning, mathematical statistics and topological structure, a GF(4) (the Galois field is abbreviated as GF) augmented model BP decoder with Tanner graph is designed. The problem of repeated check nodes can be solved by this decoder. In simulation, when the random perturbation strength p=0.0115-0.0116 and number of attempts N=60-70, the highest decoding efficiency of the augmented model BP decoder is obtained, and the low-loss frame error rate (FER) decreases to 7.1975×10-5. Hence, we design a novel augmented model decoder to compare the relationship between GF(2) and GF(4) for quantum code [[450,200]] on the depolarization channel. It can be verified that the proposed decoder provides the widely application range, and the decoding performance is better in QLDPC codes.
Keywords:  tanner graph      belief propagation decoder      augmented model      fourier transform  
Received:  17 May 2021      Revised:  28 June 2021      Accepted manuscript online:  07 July 2021
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132 and 61772295), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019YQ01), and the Higher Education Science and Technology Program of Shandong Province, China (Grant No. J18KZ012).
Corresponding Authors:  Hong-Yang Ma     E-mail:  hongyang_ma@aliyun.com

Cite this article: 

Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋) Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes 2022 Chin. Phys. B 31 010304

[1] Ma H Y, Teng J K, Hu T, Shi P and Wang S M 2020 Wireless. Pers. Commun. 113 337
[2] Yang H, Qin L G, Tian L J and Ma H Y 2020 Chin. Phys. B 29 040303
[3] Ma H Y, Xu P A, Shao C H, Chen L B, Li J X and Pan Q 2019 Int. J. Theor. Phys. 58 4241
[4] Bennett C H and Brassard G 2020 International Conference on Computers, Systems and Signal Processing 175 179
[5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[6] Britt B C 2020 Quantum Engineering 2 e29
[7] Long G L, Li X and Sun Y 2002 Phys. Lett. A 294 143
[8] Yang Y, Cao H X and Zhang Z J 2020 Sci. China Phys. Mech. Astron. 63 210312
[9] Valagiannopoulos C 2020 Quantum Engineering 2 e52
[10] Zhou L, Liu J, Liu Z K, Zhong W and Sheng Y B 2020 Quantum Engineering 3 e63
[11] Qi R Y, Sun Z, Lin Z S, Niu P H, Hao W T, Song L Y, Hang Q, Gao J G, Yin L G and Long G L 2019 Light. Sci. Appl. 8 22
[12] Wu J W, Lin Z S, Yin L G and Long G L 2020 Quantum Engineering 1 e26
[13] Cai W Z, Ma Y W, Wang W T, Zou C L and Sun L Y 2021 Fundamental Research 1 50
[14] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett. 126 010503
[15] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[16] Long G L 2001 Phys. Rev. A 64 022307
[17] Zhao X L, Li J L, Niu P H, Ma H Y and Luan D 2017 Chin. Phys. B 26 030302
[18] Zhou N R, Li J F, Yu Z B, Gong L H and Farouk A 2017 Quantum. Inf. Process. 16 4
[19] Zhou N R, Zhu K N and Zou X F 2019 Annalen Der Physik 531 1800520
[20] Zhou N R, Huang L X, Gong L H and Zeng Q W 2020 Quantum. Inf. Process. 19 284
[21] Qin L G, Wang Z Y, Ma H Y, Wang S M and Gong S Q 2017 Chin. Phy. B 26 128502
[22] Liu H, Qin L G, Tian L J and Ma H Y 2019 Chin. Phys. B 28 108502
[23] Zhang M, Zhou L and Zhong W 2019 Chin. Phys. B 28 010301
[24] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[25] Steane A M 1996 Phys. Rev. Lett. 77 793
[26] Rigby A, Olivier J C and Jarvis P 2019 Phys. Rev. A 100 012330
[27] MacKay D J, Mitchison G and McFadden P L 2004 IEEE Trans. Inf. Theory 50 2315
[28] Wang Y J, Sanders B C, Bai B M and Wang X M 2012 IEEE Trans. Inf. Theory 58 1231
[29] MacKay D J 1999 IEEE Trans. Inf. Theory 45 399
[30] Yahalom E B and Etzion T 1997 IEEE International Symposium on Information Theory IEEE 80 247
[31] Holevo A S and Shirokov M E 2013 IEEE Elect. Lett. 49 15
[32] Nielsen M A and Chuang I 2002 Proc SPIE 70 558
[33] Holevo A S 2013 Physica Scripta 415 422
[34] Lenzini L, Mingozzi E and Stea G 2008 Quantum Information and Computation 65 922
[35] MacKay D J 2003 Information Theory (Cambridge: Cambridge University Press)
[36] Hagiwara M and Imai H 2007 IEEE International Symposium on Information Theory
[37] Tan P Y and Li J 2010 IEEE Trans. Inf. Theory 56 476
[38] Chamberland C, Kubica A, Yoder T J and Zhu G Y 2020 New J. Phys. 22 2
[39] Leifer M S and Poulin D 2008 Annals of Physics 323 1899
[40] Babar Z, Botsinis P, Alanis D, Ng S X and Hanzo L 2015 IEEE Access 3 2492
[41] Calderbank D M J 2000 Journal of Geometry and Physics 36 152
[42] Rigby A, Olivier J C and Jarvis P 2020 Phys. Rev. A 15 204
[43] Calderbank A R, Rains E M, Shor P and Sloane N J 1998 Applied and Computational Harmonic Analysis 5 332
[44] Rigby A, Olivier J C and Jarvis P 2019 Phys. Rev. A 100 062303
[45] Apostolov V, Calderbank D M J and Gauduchon P 2020 Mathematical Research Letters 27 1565
[46] Gottesman 1996 Phys. Rev. A 1862 1869
[47] Poulin D and Chung Y 2008 Quantum Inf. Comput. 8 987
[1] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[2] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[3] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[4] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[5] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[6] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[7] Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
Xiang-Qun Fu(付向群), Wan-Su Bao(鲍皖苏), He-Liang Huang(黄合良), Tan Li(李坦), Jian-Hong Shi(史建红), Xiang Wang(汪翔), Shuo Zhang(张硕), Feng-Guang Li(李风光). Chin. Phys. B, 2019, 28(2): 020302.
[8] Realization of quantum permutation algorithm in high dimensional Hilbert space
Dong-Xu Chen(陈东旭), Rui-Feng Liu(刘瑞丰), Pei Zhang(张沛), Yun-Long Wang(王云龙), Hong-Rong Li(李宏荣), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2017, 26(6): 060305.
[9] Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization
Zhao Jin(金朝), Han-Ming Zhang(张瀚铭), Bin Yan(闫镔), Lei Li(李磊), Lin-Yuan Wang(王林元), Ai-Long Cai(蔡爱龙). Chin. Phys. B, 2016, 25(3): 038701.
[10] From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡). Chin. Phys. B, 2015, 24(2): 020301.
[11] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[12] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
[13] Applications of quantum Fourier transform in photon-added coherent state
Ren Gang (任刚), Du Jian-Ming (杜建明), Yu Hai-Jun (余海军). Chin. Phys. B, 2014, 23(2): 024207.
[14] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
[15] Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device
I. A. Khan, R. S. Rawat, R. Ahmad, M. A. K. Shahid. Chin. Phys. B, 2013, 22(12): 127306.
No Suggested Reading articles found!