Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098904    DOI: 10.1088/1674-1056/26/9/098904
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Temperature dependence of heat conduction coefficient in nanotube/nanowire networks

Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华)
Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  Studies on heat conduction are so far mainly focused on regular systems such as the one-dimensional (1D) and two-dimensional (2D) lattices where atoms are regularly connected and temperatures of atoms are homogeneously distributed. However, realistic systems such as the nanotube/nanowire networks are not regular but heterogeneously structured, and their heat conduction remains largely unknown. We present a model of quasi-physical networks to study heat conduction in such physical networks and focus on how the network structure influences the heat conduction coefficient κ. In this model, we for the first time consider each link as a 1D chain of atoms instead of a spring in the previous studies. We find that κ is different from link to link in the network, in contrast to the same constant in a regular 1D or 2D lattice. Moreover, for each specific link, we present a formula to show how κ depends on both its link length and the temperatures on its two ends. These findings show that the heat conduction in physical networks is not a straightforward extension of 1D and 2D lattices but seriously influenced by the network structure.
Keywords:  heat conduction      nanotube/nanowire      complex network      one-dimensional (1D) lattice  
Received:  22 March 2017      Revised:  04 June 2017      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  44.10.+i (Heat conduction)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11135001 and 11375066) and the National Basic Research Program of China (Grant No. 2013CB834100).
Corresponding Authors:  Zonghua Liu     E-mail:  zhliu@phy.ecnu.edu.cn

Cite this article: 

Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华) Temperature dependence of heat conduction coefficient in nanotube/nanowire networks 2017 Chin. Phys. B 26 098904

[1] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[2] Li N B, Ren J, Wang L, Zhang G, Hanggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[3] Dhar A 2008 Advances in Physics 57 457
[4] Lepri S 1998 Phys. Rev. E 58 7165
[5] Pereverzev A 2003 Phys. Rev. E 68 056124
[6] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601
[7] Payton D N, Ⅲ and Visscher W M 1967 Phys. Rev. 156 1032
[8] Li B W, Casati G and Wang J 2003 Phys. Rev. E 67 021204
[9] Kaburaki H and Machida M 1993 Phys. Lett. A 181 85
[10] Dhar A 2001 Phys. Rev. Lett. 86 3554
[11] Rieder Z, Lebowitz J L and Lieb E J 1967 Math. Phys. 8 1073
[12] Savin A V and Gendelman O V 2003 Phys. Rev. E 67 041205
[13] Liu Z H and Li B W 2008 J. Phys. Soc. Jpn. 77 074003
[14] Li N B and Li B 2007 Europhys. Lett. 78 34001
[15] Aoki K and Kusnezov D 2001 Phys. Rev. Lett. 86 4029
[16] Zolotarevskiy V, Savin A V and Gendelman O V 2015 Phys. Rev. E 91 032127
[17] Liu S, Xu X F, Xie R G, Zhang G and Li B W 2012 Eur. Phys. J. B 85 337
[18] Li N B, Li B W and Flach S 2010 Phys. Rev. Lett. 105 054102
[19] Stadermann M 2004 Phys. Rev. B 69 201402
[20] Skakalova V, Kaiser A B, Woo Y S and Roth S 2006 Phys. Rev. B 74 085403
[21] Xu H, Zhang S and Anlage S M 2008 Phys. Rev. B 77 075418
[22] Liu Z H, Wu X, Yang H J, Gupte N and Li B W 2010 New J. Phys. 12 023016
[23] Liu Z H and Li B W 2007 Phys. Rev. E 76 051118
[24] Nose S 1984 J. Chem. Phys. 81 511
[25] Hoover W G 1985 Phys. Rev. A 31 1695
[26] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896
[27] Hu B B, Li B W and Zhao H 1998 Phys. Rev. E 57 2992
[28] Hu B B, Li B W and Zhao H 2000 Phys. Rev. E 61 3828
[29] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[30] Xiong Kezhao, Li Baowen and Liu Zonghua 2017 unpublished
[31] Liu Z H, Lai Y C, Ye N and Dasgupta P 2002 Phys. Lett. A 303 337
[32] Albert R and Barabasi A 2002 Rev. Mod. Phys. 74 47
[33] Kim B J 2004 Phys. Rev. E 69 045101
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!