INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Collective motion of active particles in environmental noise |
Qiu-shi Chen(陈秋实), Ming Ji(季铭) |
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We study the collective motion of active particles in environmental noise, where the environmental noise is caused by noise particles randomly diffusing in two-dimensional space. We show that active particles in a noisy environment can self organize into three typical phases: polar liquid, band, and disordered gas states. In our model, the transition between band and disordered gas states is discontinuous. Giant number fluctuation is observed in the polar liquid phase. We also compare our results with the Vicsek model and show that the interaction with noise particles can stabilize the band state to very low noise condition. This band structure could recruit most of the active particles in the system, which greatly enhances the coherence of the system. Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors, which may further contribute to improving the design of collective migration and navigation strategies.
|
Received: 26 April 2017
Revised: 16 May 2017
Accepted manuscript online:
|
PACS:
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
87.18.Tt
|
(Noise in biological systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91427302, 91027040, and 11474155) and the National Basic Research Program of China (Grant No. 2012CB821500). |
Corresponding Authors:
Qiu-shi Chen
E-mail: qs_chen88926@sina.com
|
Cite this article:
Qiu-shi Chen(陈秋实), Ming Ji(季铭) Collective motion of active particles in environmental noise 2017 Chin. Phys. B 26 098903
|
[1] |
Vicsek T and Zafeiris A 2012 Physics Reports 517 71
|
[2] |
Schaller V, Weber C Semmrich C, Frey E and Bausch A R 2010 Nature 467 73
|
[3] |
Schaller V, Weber C, Frey E and Bausch A R 2011 Soft Matter 7 3213
|
[4] |
Shi X Q and Ma Y Q 2010 Proc. Natl. Acad. Sci. USA 107 11709
|
[5] |
Chen L M 2016 Acta Phys. Sin. 65 186401 (in Chinese)
|
[6] |
Czirok A, Matsushita M and Vicsek T 2001 Phys. Rev. E 63 031915
|
[7] |
Yamazaki Y, Ikeda T, Shimada H, Hiramatsu F, Kobayashi N, Wakita J, Itoh H, Kurosu S, Nakatsuchi M, Matsuyama T and Matsushita M 2005 Physica D 205 136
|
[8] |
Chen C, Liu S, Shi X Q, Chaté H and Wu Y 2017 Nature 542 210
|
[9] |
Buhl J, Sumpter D J T, Couzin I D, Hale J J, Despland E, Miller E R and Simpson S J 2006 Science 312 1402
|
[10] |
Ballerini M, Calbibbo N, Candeleir R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M and Zdravkovic V 2008 Proc. Natl. Acad. Sci. USA 105 1232
|
[11] |
Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati G, Stefanini G and Viale M 2010 Proc. Natl. Acad. Sci. USA 107 11865
|
[12] |
Herbert-Read J E, Perna A, Mann R P, Schaerf T M, Sumpter D J T and Ward A J W 2011 Proc. Natl. Acad. Sci. USA 108 18726
|
[13] |
Katz Y, Tunstrom K, Ioannou C C, Huepe C and Couzin I D 2011 Proc. Natl. Acad. Sci. USA 108 18720
|
[14] |
Parrish J K and Edelstein-Keshet L 1999 Science 284 99
|
[15] |
Couzin I 2007 Nature 445 715
|
[16] |
Shi X Q, Chaté H and Ma Y Q 2014 New J. Phys. 16 035003
|
[17] |
Shi X Q and Ma Y Q 2007 J. Chem. Phys. 126 125101
|
[18] |
Nagy M, Akos Z, Biro D and Vicsek T 2010 Nature 464 890
|
[19] |
Farkas I, Helbing D and Vicsek T 2002 Nature 419 131
|
[20] |
Moussaid M, Helbing D and Theraulaz G 2011 Proc. Natl. Acad. Sci. USA 108 6884
|
[21] |
Vicsek T, Czirok A, Jacob E B, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
|
[22] |
Toner J and Tu Y H 1998 Phys. Rev. E 58 4828
|
[23] |
Toner J and Tu Y H 1995 Phys. Rev. Lett. 75 4326
|
[24] |
Strombom D 2011 J. Theor. Biol. 283 145
|
[25] |
Shi X Q and Ma Y Q 2013 Nat. Commun. 4 3013
|
[26] |
Zhang B K, Li J, Chen K, Tian W D and Ma Y Q 2016 Chin. Phys. B 25 116101
|
[27] |
Gregoire G, Chaté H and Tu Y H 2003 Physica D 181 157
|
[28] |
Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84 040301
|
[29] |
Peruani F, Klauss T, Deutsch A and Voss-Boehme A 2011 Phys. Rev. Lett. 106 128101
|
[30] |
Helbing D, Johansson A and Al-Abideen H Z 2007 Phys. Rev. E 75 046109
|
[31] |
Gopinath A, Hagan M F, Marchetti M C and Baskaran A 2012 Phys. Rev. E 85 061903
|
[32] |
Ginelli F, Peruani F, Baer M and Chaté H 2010 Phys. Rev. Lett. 104 184502
|
[33] |
Golestanian R 2009 Phys. Rev. Lett. 102 188305
|
[34] |
Hoare D J, Couzin I D, Godin J G J and Krause J 2004 Anim. Behav. 67 155
|
[35] |
Peruani F, Deutsch A and Bar M 2012 Phys. Rev. Lett. 108 098102
|
[36] |
Polin M, Tuval I, Drescher K, Gollub J P and Goldstein R E 2009 Science 325 487
|
[37] |
Goldstein R E, Polin M and Tuval I 2009 Phys. Rev. Lett. 103 168103
|
[38] |
Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103
|
[39] |
Gregoire G and Chaté H 2004 Phys. Rev. Lett. 92 025702
|
[40] |
Solon A P, Chaté H and Tailleur J 2015 Phys. Rev. Lett. 114 068101
|
[41] |
Chaté H, Ginelli F, Gregoire G and Raynaud F 2008 Phys. Rev. E 77 046113
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|