|
|
Pressure-induced phase transition of B-type Y2O3 |
Qian Zhang(张倩)1, Xiang Wu(巫翔)2, Shan Qin(秦善)3 |
1 Gemological Institute, China University of Geosciences, Wuhan 430074, China; 2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China; 3 Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education & School of Earth and Space Sciences, Peking University, Beijing 100871, China |
|
|
Abstract The synthesized monoclinic (B-type) phase of Y2O3 has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature. A phase transition occurs from monoclinic (B-type) to hexagonal (A-type) phase at 23.5 GPa and these two phases coexist even at the highest pressure. Parameters of isothermal equation of state are V0=69.0(1) Å3, K0=159(3) GPa, K0'=4 (fixed) for the B-type phase and V0=67.8(2) Å3, K0=156(3) GPa, K0'=4 (fixed) for the A-type phase. The structural anisotropy increases with increasing pressure for both phases.
|
Received: 03 May 2017
Revised: 15 May 2017
Accepted manuscript online:
|
PACS:
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
91.60.Hg
|
(Phase changes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1232204 and 41502029) and China Postdoctoral Science Foundation (Grant No. 2015M580679). |
Corresponding Authors:
Qian Zhang
E-mail: qianzhang@cug.edu.cn
|
Cite this article:
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善) Pressure-induced phase transition of B-type Y2O3 2017 Chin. Phys. B 26 090703
|
[1] |
Aktas B, Tekeli S and Kucuktuvek M 2014 Int. J. Mater. Res. 105 208
|
[2] |
Scott H 1975 J. Mater. Sci. 10 1527
|
[3] |
Hussein G A 1996 J. Anal. Appl. Pyrolysis 37 111
|
[4] |
Dedov A, Loktev A, Moiseev I, Aboukais A, Lamonier J F and Filimonov I 2003 Applied Catalysis A: General 245 209
|
[5] |
Shikama T, Toh K, Nagata S, Tsuchiya B, Yamauchi M, Nishitani T, Suzuki T, Okamoto K and Kubo N 2006 Nucl. Fusion 46 46
|
[6] |
Weber W J, Ewing R C, Catlow C R A, de la Rubia T D, Hobbs L W, Kinoshita C, Matzke H, Motta A T, Nastasi M, Salje E K H, Vance E R and Zinkle S J 1998 J. Mater. Res. 13 1434
|
[7] |
Umemoto K and Wentzcovitch R M 2008 Proc. Natl. Acad. Sci. USA 105 6526
|
[8] |
Yusa H, Tsuchiya T, Sata N and Ohishi Y 2009 Inorg. Chem. 48 7537
|
[9] |
Nishio-Hamane D, Katagiri M, Niwa K, Sano-Furukawa A, Okada T and Yagi T 2009 High Press. Res. 29 379
|
[10] |
Zinkevich M 2007 Prog. Mater. Sci. 52 597
|
[11] |
Wu B, Zinkevich M, Aldinger F, Wen D and Chen L 2007 J. Solid State Chem. 180 3280
|
[12] |
Wang H, Uehara M, Nakamura H, Miyazaki M and Maeda H 2005 Adv. Mater. 17 2506
|
[13] |
Hoekstra H R and Gingerich K A 1964 Science 146 1163
|
[14] |
Atou T, Kusaba K, Fukuoka K, Kikuchi M and Syono Y 1990 J. Solid State Chem. 89 378
|
[15] |
Halevy I, Carmon R, Winterrose M L, Yeheskel O, Tiferet E and Ghose S 2010 J. Phys. Conf. Ser. 215 012003
|
[16] |
Husson E, Proust C, Gillet P and Itie J 1999 Mater. Res. Bull. 34 2085
|
[17] |
Bose P P, Gupta M, Mittal R, Rols S, Achary S, Tyagi A and Chaplot S 2011 Phys. Rev. B 84 094301
|
[18] |
Wang L, Pan Y, Ding Y, Yang W, Mao W L, Sinogeikin S V, Meng Y, Shen G and Mao H 2009 Appl. Phys. Lett. 94 061921
|
[19] |
Yusa H, Tsuchiya T, Sata N and Ohishi Y 2010 Inorg. Chem. 49 4478
|
[20] |
Umemoto K and Wentzcovitch R M 2011 Phys. Chem. Miner. 38 387
|
[21] |
Bai X, Song H, Liu B, Hou Y, Pan G and Ren X 2008 J. Nanosci. Nanotechnol. 8 1404
|
[22] |
Fei Y, Ricolleau A, Frank M, Mibe K, Shen G and Prakapenka V 2007 Proc. Natl. Acad. Sci. USA 104 9182
|
[23] |
Zhang J, Cui H, Zhu P, Ma C, Wu X, Zhu H, Ma Y and Cui Q 2014 J. Appl. Phys. 115 023502
|
[24] |
Zhang Q, Wu X, Ovsyannikov S V, Dong J, Qin S, Dubrovinsky L S and Chen D 2016 Chem. Res. Chin. Univ. 32 545
|
[25] |
Tang S X, Zhu H Y, Jiang J R, Wu X X, Dong Y X, Zhang J, Yang D P and Cui Q L 2015 Chin. Phys. B 24 096101
|
[26] |
Li N N, Li Y, Li H, Tang R L, Zhao Y S, Han D D, Ma Y M, Cui Q L, Zhu P W and Wang X 2014 Chin. Phys. B 23 069101
|
[27] |
Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
|
[28] |
Hammersley A, Svensson S, Hanfland M, Fitch A and Hausermann D 1996 High Press. Res. 14 235
|
[29] |
Holland T and Redfern S 1997 Mineral. Mag. 61 65
|
[30] |
Toby B H 2001 J. Appl. Crystallogr. 34 210
|
[31] |
Liu D, Lei W, Li Y, Ma Y, Hao J, Chen X, Jin Y, Yu S and Cui Q 2009 Inorg. Chem. 48 8251
|
[32] |
Ovsyannikov S V, Bykova E, Bykov M, Wenz M D, Pakhomova A S, Glazyrin K, Liermann H P and Dubrovinsky L 2015 J. Appl. Phys. 118 165901
|
[33] |
Birch F 1952 J. Geophys. Res. 57 227
|
[34] |
Jiang S, Liu J, Lin C, Li X and Li Y 2013 J. Appl. Phys. 113 113502
|
[35] |
Hahn T 2002 International Table for Crystallography, A (5th edn.) (Dordrecht: Kluwer) pp. 540, 541
|
[36] |
Jiang S, Liu J, Li X, Bai L, Xiao W, Zhang Y, Lin C, Li Y and Tang L 2011 J. Appl. Phys. 110 013526
|
[37] |
Hoekstra H R 1966 Inorg. Chem. 5 754
|
[38] |
Yusa H, Tsuchiya T, Tsuchiya J, Sata N and Ohishi Y 2008 Phys. Rev. B 78 092107
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|