Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090502    DOI: 10.1088/1674-1056/26/9/090502
GENERAL Prev   Next  

A generalized model of TiOx-based memristive devices andits application for image processing

Jiangwei Zhang(张江伟)1,2,3, Zhensen Tang(汤振森)1,2, Nuo Xu(许诺)1,2,4, Yao Wang(王耀)2, Honghui Sun(孙红辉)1,2, Zhiyuan Wang(王之元)1,2, Liang Fang(方粮)1,2
1 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China;
2 School of Computer, National University of Defense Technology, Changsha 410073, China;
3 Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
4 Department of Material Science and Engineering, College of Engineering, Seoul National University, Seoul 151-744, Republic of Korea
Abstract  

Memristive technology has been widely explored, due to its distinctive properties, such as nonvolatility, high density, versatility, and CMOS compatibility. For memristive devices, a general compact model is highly favorable for the realization of its circuits and applications. In this paper, we propose a novel memristive model of TiOx-based devices, which considers the negative differential resistance (NDR) behavior. This model is physics-oriented and passes Linn's criteria. It not only exhibits sufficient accuracy (IV characteristics within 1.5% RMS), lower latency (below half the VTEAM model), and preferable generality compared to previous models, but also yields more precise predictions of long-term potentiation/depression (LTP/LTD). Finally, novel methods based on memristive models are proposed for gray sketching and edge detection applications. These methods avoid complex nonlinear functions required by their original counterparts. When the proposed model is utilized in these methods, they achieve increased contrast ratio and accuracy (for gray sketching and edge detection, respectively) compared to the Simmons model. Our results suggest a memristor-based network is a promising candidate to tackle the existing inefficiencies in traditional image processing methods.

Keywords:  memristor modeling      memristor-based network      gray sketching      edge detection  
Received:  08 March 2017      Revised:  18 May 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.85.dq (Neural networks)  
  95.75.Mn (Image processing (including source extraction))  
  05.45.Tp (Time series analysis)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61332003 and 61303068) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3024).

Corresponding Authors:  Liang Fang     E-mail:  lfang@nudt.edu.cn

Cite this article: 

Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮) A generalized model of TiOx-based memristive devices andits application for image processing 2017 Chin. Phys. B 26 090502

[1] Hwang C S 2015 Adv. Electron. Mater. 1 1400056
[2] Sonka M, Hlavac V and Boyle R 1993 Image Processing, Analysis and Machine Vision (1st edn.) (Stanford: Cengage Learning) pp. 193-242
[3] Strukov D B and Likharev K K 2007 IEEE Trans. Nanotechnol. 6 696
[4] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[5] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[6] Liu S, Sen N and Zhao X 2016 Adv. Mater. 28 10623
[7] Alibart F, Zamanidoost E and Strukov D B 2013 Nat. Commun. 4 2072
[8] Chai X L, Gan Z H, Lu Y, Zhang M H and Chen Y R 2016 Chin. Phys. B 25 100503
[9] Chai X L, Gan Z H, Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
[10] Chi P, Li S, Zhang T, Zhao J and Liu Y 2016 International Symposium on Computer Architecture, June 18-22, 2016, Seoul, Korea, p. 27
[11] Bao B C, Hu H W, Liu Z and Xu J P 2014 Chin. Phys. B 23 070503
[12] Liu W, Wang F Q and Ma X K 2015 Chin. Phys. B 24 118401
[13] Pickett M D, Strukov D B and Borghetti J L 2009 J. Appl. Phys. 106 074508
[14] Kvatinsky S, Friedman E G and Kolodny A 2013 IEEE Trans. Circ. Syst. I 60 211
[15] Chang T, Jo S H, Kim K H, Sheridan P and Gaba S 2011 Appl. Phys. A 102 857
[16] Kvatinsky S, Friedman E G and Kolodny A 2015 IEEE Trans. Circ. Syst. Ⅱ 62 786
[17] Yang J J, Pickett M D and Li X 2008 Nat. Nanotechol. 3 429
[18] Yakopcic C and Taha T M 2013 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32 1201
[19] Linn E, Siemon A and Waser R 2014 IEEE Trans. Circ. Syst. I 61 2402
[20] Yuan F, Wang G Y and Wang X Y 2015 Chin. Phys. B 24 060506
[21] Wang X P, Min C and Yi S 2015 Chin. Phys. B 24 088401
[22] Pickett M D, Julien B and Yang J J 2011 Adv. Mater. 23 1730
[23] Szot K, Rogala M and Speier W 2011 Nanotechnol. 22 254001
[24] Rainer W, Regina D and Georgi S 2009 Adv. Mater. 21 2632
[25] Tang Z, Fang L and Xu N 2015 J. Appl. Phys. 118 185309
[26] Linn E, Rosezin R, Kügeler C and Waser R 2010 Nat. Mater. 9 403
[27] Xu N, Fang L and Chi Y 2014 Proc. IEEE Int. Conf. Nanotechol., August 18-21, 2014, Toronto, Canada, p. 727
[28] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[29] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[30] Salaoru L, Li Q, Khiat A and Prodromakis T 2014 Nanoscale Res. Lett. 9 552 Li J, Tang A and Li X 2014 Nanoscale Res. Lett. 9 1040
[31] Russo U, Kalamanathan D, Ielmini D, Lacaita A L and Kozicki M 2009 IEEE Trans. Electron Devices 56 1040
[32] Yu S and Wong H S P 2011 IEEE Trans. Electron Devices 58 1352
[33] Ielmini D 2011 IEEE Trans. Electron Devices 58 4309
[34] Linn E, Menzel S, Ferch S and Waser R 2013 Nanotechnol. 24 384008
[35] Van D H, Havel J V and Linn E 2013 Sci. Rep. 3 2856
[36] Snyman J 2005 Practical Mathematical Optimization (New York: Springer Science and Business Media) p. 97
[37] Brooks S P and Morgan B J T 1995 The Statistician 44 241
[38] Covi E, Brivio S and Serb A 2016 Proc. IEEE Int. Symp. Circ. Syst., May 22-15, 2016, Montreal, Canada, pp. 393-396
[39] Siemon A, Menzel S and Marchewka A 2014 Proc. IEEE Int. Symp. Circ. Syst., June 1-5, 2014, Melbourne, Australia, pp. 1420-1423
[40] Jang J W, Park S and Jeong Y H 2014 Proc. IEEE Int. Symp. Circ. Syst., June 1-5, 2014, Melbourne, Australia, pp. 1054-1057
[41] Brivio S, Covi E and Serb A 2016 Appl. Phys. Lett. 109 133504
[42] Covi E, Brivio S and Serb A 2016 Front. Neurosci. 10 482
[43] Kim K, Li S and Kim J Y 2009 IEEE Trans. Circ. Syst. Video Technol. 19 1612
[44] Liu Y and Wang L 2014 Acta Phys. Sin. 63 080503 (in Chinese)
[45] Peli E 1990 JOSA 7 2032
[46] Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 679
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[11] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[12] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[13] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!