Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090501    DOI: 10.1088/1674-1056/26/9/090501
GENERAL Prev   Next  

Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise

Wei Li(李伟)1, Mei-Ting Zhang(张美婷)1, Jun-Feng Zhao(赵俊锋)2
1 School of Mathematics and Statistics, Xidian University, Xi'an 710071, China;
2 Applied Mathematics Department, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The stochastic bifurcation of a generalized Duffing-van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation.
Keywords:  stochastic bifurcation      fractional derivative      color noise      stochastic averaging method  
Received:  01 March 2017      Revised:  08 May 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.Gg (Stochastic analysis methods)  
  05.10.Ln (Monte Carlo methods)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11302157), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JM1028), the Fundamental Research Funds for the Central Universities, China (Grant No. JB160706), and Chinese-Serbian Science and Technology Cooperation for the Years 2015-2016 (Grant No. 3-19).
Corresponding Authors:  Wei Li     E-mail:  liweilw@mail.xidian.edu.cn

Cite this article: 

Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋) Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise 2017 Chin. Phys. B 26 090501

[1] Arnold L 1998 Random dynamical systems (Berlin: Springer)
[2] Yang J H, Cai X M and Liu X B 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3498
[3] Wang X D, Rong H W, Meng G, Xu W and Fang T 2005 Acta Phys. Sin. 54 2557 (in Chinese)
[4] Rong H W, Wang X D, Meng G, Xu W and Fang T 2006 Chin. J. Appl. Mech. 27 1373 (in Chinese)
[5] Zakharova A, Vadivasova T, Anishchenko V, Koseska A and Kurths J 2010 Phys. Rev. E 81 011106
[6] Xu Y, Gu R C, Zhang H Q, Xu W and Duan J Q 2011 Phys. Rev. E 83 056215
[7] Gu R C, Xu Y, Hao M L and Yang Z Q 2011 Acta Phys. Sin. 60 060513 (in Chinese)
[8] Hao Y and Wu Z Q 2013 Chin. J. Theor. Appl. Mech. 45 257 (in Chinese)
[9] Wu Z Q and Hao Y 2013 Sci. Sin.: Phys. Mech. Astron. 43 524 (in Chinese)
[10] Wu Z Q and Hao Y 2015 Acta Phys. Sin. 64 060501 (in Chinese)
[11] Xu W, Yang G D and Yue X L 2016 Acta Phys. Sin. 65 210501 (in Chinese)
[12] Huang Z L and Jin X L 2009 J. Sound Vib. 319 1121
[13] Chen L C and Zhu W Q 2011 Probablistic Eng. Mech. 26 208
[14] Hu F, Chen L C and Zhu W Q 2012 Int. J. Non-Linear Mech. 47 1081
[15] Sheu L J, Chen H K, Chen J H and Tam L M 2007 Chaos Solitons Fractals 32 1459
[16] Chen J H and Chen W C 2008 Chaos Solitons Fractals 35 188
[17] Zhu W Q 1992 Random Vibration (Beijing: Science Press) ( in Chinese)
[18] Ling F H 1987 Catastrophe Theory and its Applications (Shanghai: Shang Hai Jiao Tong University Press) p. 4 (in Chinese)
[19] Chen L C, Zhao T L, Li W and Zhao J 2016 Nonlinear Dyn. 82 529
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[3] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[4] Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation
Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东). Chin. Phys. B, 2016, 25(2): 020201.
[5] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[6] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群). Chin. Phys. B, 2015, 24(2): 020204.
[7] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[8] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[9] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[10] Stochastic responses of Duffing–Van der Pol vibro-impact system under additive colored noise excitation
Li Chao (李超), Xu Wei (徐伟), Wang Liang (王亮), Li Dong-Xi (李东喜). Chin. Phys. B, 2013, 22(11): 110205.
[11] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[12] Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives
Zhang Yi (张毅). Chin. Phys. B, 2012, 21(8): 084502.
[13] Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives
Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2012, 21(10): 100202.
[14] Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation
Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud. Chin. Phys. B, 2011, 20(4): 040508.
[15] The Stochastic stability of a Logistic model with Poisson white noise
Duan Dong-Hai(段东海), Xu Wei(徐伟), Su Jun(苏军), and Zhou Bing-Chang(周丙常). Chin. Phys. B, 2011, 20(3): 030501.
No Suggested Reading articles found!