Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087502    DOI: 10.1088/1674-1056/26/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Zr substitution on structural, morphological, and magnetic properties of bismuth iron oxide phases

A Asif1, M Hassan1, S Riaz2, S Naseem2, S S Hussain2
1 Materials Growth and Simulation Laboratory, Department of Physics, University of the Punjab, Lahore-54590, Pakistan;
2 Center of Excellence in Solid State Physics, University of the Punjab, Lahore-54590, Pakistan
Abstract  

The present study involves co-precipitation method to grow un-doped and Zr-doped bismuth iron oxide with xZr = 0.10-0.30. The molar solutions of ferric chloride (FeCl3), zirconyle chloride (ZrOCl2), and bismuth chloride (BiCl3) are prepared in distilled water, and are allowed to react with sodium hydroxide (NaOH). The synthesized powders are then converted into pellets, which are sintered at 500 ℃ for two hours in a muffle furnace. X-ray diffraction (XRD) shows multi-phase formation in un-doped and Zr doped samples. Scanning electron microscope (SEM) depicts layered structure at low Zr concentration xZr = 0.10, while uniform surface with smaller grains and voids is observed at xZr = 0.20, but at xZr = 0.30, cracks and voids become prominent. The ferromagnetic nature of the un-doped sample is observed by vibrating sample magnetometer (VSM), while paramagnetic behavior appears due to Zr doping. The ferromagnetism in un-doped sample is lost by Zr doping, which is due to the formation of additional Fe-O-Zr bonds that induce paramagnetic behavior.

Keywords:  co-precipitation      multi-phases      ferromagnetism      paramagnetism      BiFeO3  
Received:  23 December 2016      Revised:  01 May 2017      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  61.05.cp (X-ray diffraction)  
  81.10.Dn (Growth from solutions)  
Corresponding Authors:  M Hassan     E-mail:  mahmood.physics@pu.edu.pk
About author:  0.1088/1674-1056/26/8/

Cite this article: 

A Asif, M Hassan, S Riaz, S Naseem, S S Hussain Effects of Zr substitution on structural, morphological, and magnetic properties of bismuth iron oxide phases 2017 Chin. Phys. B 26 087502

[1] Lv Z, Zhang J, Niu W, Zhang M, Song L, Zhu H and Wang X 2016 Chin. Phys. B 25 097502
[2] Parveen B, Hassan M Khalid Z, Riaz S and Naseem S 2017 J. Appl. Res. Technol. 15 132
[3] Dong Z, Feng Z Y, Bai M X, Quan L S, Zhi H J, Gang Z M, Sheng W C and Bo Y J 2015 Chin. Phys. Lett. 32 127502
[4] Hassan M, Irfan R, Riaz S, Naseem S, Hussain S S and Murtaza G 2017 J. Korean Phys. Soc. 70 460
[5] Imran M M, Ying S, Hao D S, Wen S K, Wei H P and Cong W 2015 Chin. Phys. Lett. 32 67503
[6] Yan L H, Hong L Z, Tian L G and Qiao M X 2016 Acta Phys. Sin. 65 048102 (in Chinese)
[7] Yong Y, Ling X C, Liang Q, Hua L X and Shen L F 2010 Chin. Phys. Lett. 27 057501
[8] Hassan M, Younas S, Sher F, Husain S S, Riaz S and Naseem S 2017 Appl. Phys. A 123 352
[9] Hui H G, Wei L L and Umehara I 2016 Chin. Phys. B 25 067501
[10] Jing G and Ling S L 2015 Acta Phys. Sin. 64 217406 (in Chinese)
[11] Bao L F, Huang W D and Ren Y J 2016 Chin. Phys. Lett. 33 77502
[12] Ling Z S, Ye C W and Yong Z 2015 Acta Phys. Sin. 64 167501 (in Chinese)
[13] Cheng L Y, Ying Z, Lin G W, Gui Y Y and Zhong F 2007 Physics 36 0
[14] Dong H X, Yi X Z, Rui W E, Liang C G and Ping L Z 2010 Chin. Phys. Lett. 27 117502
[15] Hua C Y, Jing P R, Hao S Y, Ting L T, Min W Z, Dong L G and Ting C Y 2016 Acta Phys. Sin. 65 087102 (in Chinese)
[16] Abid A, Hassan M, Hussain S S, Riaz S and Naseem S 2017 J. Supercond. Nov. Magn. doi:10.1007/s10948-017-4067-8
[17] Yu Y Z, Li S, Mei P M and Juan S S 2016 Acta Phys. Sin. 65 127501 (in Chinese)
[18] Chun P F, Peng C Z, ling L X, Fu Z, Ming W X and Ming C H 2016 Chin. Phys. B 25 096108
[19] Mahmood Q and Hassan M 2017 J. Alloys Compd. 704 659
[20] Sattar M A, Rashid M, Hashmi M R, Ahmad S A, Imran M and Hussain F 2016 Chin. Phys. B 25 107402
[21] Hassan M, Noor N A, Mahmood Q and Amin B 2016 Curr. Appl. Phys. 16 1473
[22] Ying X H, Yu C, Chen J, Xiang J S, Yao Y M, Ying G Z, Kun L, Qi C M and Yi Z G 2016 Chin. Phys. B 25 067503
[23] Murari N M, Thomas R, Melgarejo R E, Pavunny S P and Katiyar R S 2009 J. Appl. Phys. 106 014103
[24] Shami M Y, Awan M S, Rehman M A U 2011 J. Alloys Compd. 509 10139
[25] Martin L W, Chu Y H, Ramesh R 2010 Mater. Sci. Eng. R 68 89
[26] Wang Y and Nan C W 2007 Ferroelectrics 357 172
[27] Teague J R, Gerson R and James WJ 1963 Solid State Commun. 8 1073
[28] Michel C, Moreau J M, Achenbach G D, Gerson R and James W 1969 Solid State Commun. 7 701
[29] Rojac T, Bencan A, Malic B, Tutuncu G, Jones J L, Daniels J E and Damjanovic D 2014 J. Am. Ceram. Soc. 97 1993
[30] Li C X, Yang B, Zhang S T, Liu D Q, Zhang R, Sun Y and Cao W W 2014 J. Alloys Compd. 590 346
[31] Mao W W, Wang X F, Han Y M, Li X A, Li Y T, Wang Y F, Ma Y W, Feng X M, Yang T, Yang J P and Huang W 2014 J. Alloys Compd. 584 520
[32] Li C X, Yang B, Zhang S T, Liu D Q, Zhang R, Sun Y and Cao W W 2014 J. Alloys Compd. 590 346
[33] Nalwa K S and Garg A 2008 J. Appl. Phys. 103 044101
[34] Jee S M, Gupta R, Garg A, Bansal V and Bhargava S 2010 J. Appl. Phys. 107 123535
[35] Gheorghiua F P, Ianculescub A, Postolachea P, Lupuc N, Dobromira M, Lucaa D and Mitoseriua L 2010 J. Alloys Compd. 506 862
[36] Singh S K and Ishiwara H 2006 Jpn. J. Appl. Phys. 45 3194
[37] Kim J K, Kim S S and Kim W J 2005 Mater. Lett. 59 4006
[38] Sharma S, Singh V, Kotnala R K, Dwivedi R K 2014 J. Mater. Sci: Mater. Electron 25 1915
[39] Pradhan A K, Zhang K, Hunter D, Dadson J B and Loutts G B 2005 J. Appl. Phys. 97 093903
[40] Riaz S, Shah S M H, Akbar A, Kayani Z N and Naseem S 2014 IEEE Trans. Magn. 50 8
[41] Xie J, Feng C, Pan X and Liu Y 2014 Ceram. Int. 40 703
[42] Muneeswaran M, Jegatheesan P and Giridharan N V 2013 J. Exp. Nanosci. 8 341
[43] Naganuma H and Okamura S 2007 J. Appl. Phys. 101 09M103.
[44] Layek S and Vera H C 2012 Adv. Mat. Lett. 3 533
[45] Inoue M and Hirasawa I 2013 J. Cryst. Growth 380 169
[46] Moret M, Chaaya A A, Bechelany M, Miele P, Robin Y and Briot O 2014 Superlattices Microstruct. 75 477
[47] Song J M, Chen W T, Hsieh K H, Kao T H, Chen I G, Chiu S J and Lee H Y 2014 Nano Res. Lett. 9 438
[48] Zhang S T, Lu M H, Wu D, Chen Y F and Ming N B 2005 Appl. Phys. Lett. 87 262907
[49] Layek S and Vera H C 2012 Adv. Mater. Lett. 3 533
[50] Arora M, Chauhan S, Sati P C, Kumar M, Chhoker S and Kotnala R K 2012 J. Appl. Phys. 112 094102
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[6] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[7] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[8] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[9] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[10] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[11] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[12] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[13] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[14] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[15] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
No Suggested Reading articles found!