Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080501    DOI: 10.1088/1674-1056/26/8/080501
REVIEW Prev   Next  

Modified Chapman-Enskog expansion: A new way to treat divergent series

Zhen-Su She(佘振苏)
State Key Laboratory for Turbulence and Complex Systems and the Department of Mechanics and Engineering Sciences, College of Engineering, Peking University, Beijing 100871, China
Abstract  

The resolution by Chen and Sun of divergent Chapman-Enskog expansion problem will not only build a unified foundation for non-equilibrium dynamics modeling at all Mach number and Knudsen number, but also shed light to a large class of difficult theoretical problems involving divergent expansion on strong nonlinearity.

Keywords:  Chapman-Enskog expansion      non-equilibrium dynamics  
Received:  18 May 2017      Revised:  28 May 2017      Accepted manuscript online: 
PACS:  05.20.Dd (Kinetic theory)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  02.30.Mv (Approximations and expansions)  
Corresponding Authors:  Zhen-Su She     E-mail:  she@pku.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Zhen-Su She(佘振苏) Modified Chapman-Enskog expansion: A new way to treat divergent series 2017 Chin. Phys. B 26 080501

[1] Hilbert D 1916 Mathematische Annalen 72 562
[2] Chapman S 1916 Proc. Roy. Soc. London A93 1
[3] Enskog D 1917 Allgemeiner Teil, Almqvist & Wiksell, Uppsala
[4] Chapman S and Cowling T G 1990 The Mathematical Theory of Non-uniform Gases (Cambridge: Cambridge University Press)
[5] Chen N X and Sun B H 2017 Chin. Phys. Lett. 34 020502
[6] Chen N X 1990 Phys. Rev. Lett. 64 1193
[7] Maddox J 1990 Nature 344 29
[8] Chen N X 2010 Möbius Inversion in Physics (Singapore: World Scientific)
[9] Xu K 2002 Phys. Fluids 14 L17
[10] Chen N X 2017 private communication
[11] Yakhot V and Orszag S A 1986 J. Sci. Computing 1 3
[12] She Z S, Chen X and Hussain F 2014 "A Lie-group derivation of a multi-layer mixing length formula for turbulent channel and pipe flow", Turbulence colloquium Marseille 2011, ed. Farge, Moffatt, Schneider, pp. 436-455, ISBN 978-2-7598-1145-8
[13] She Z S, Chen X, Wu Y and Hussain F 2010 Acta Mech. Sin. 26 847
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[3] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[4] Effect of plasma on combustion characteristics of boron
Peng Zhang(张鹏), Wenli Zhong(钟文丽), Qian Li(李倩), Bo Yang(杨波), Zhongguang Li(李忠光), Xiao Luan(栾骁). Chin. Phys. B, 2017, 26(11): 110501.
[5] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[6] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[7] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
[8] Confined subdiffusion in three dimensions
Qin Shan-Lin (覃善林), He Yong (何勇). Chin. Phys. B, 2014, 23(11): 110206.
[9] Influence of limestone fillers on combustion characteristics of asphalt mortar for pavements
Wu Ke (吴珂), Zhu Kai (朱凯), Wu Hao (吴昊), Han Jun (韩君), Wang Jin-Chang (王金昌), Huang Zhi-Yi (黄志义), Liang Pei (梁培). Chin. Phys. B, 2014, 23(7): 074703.
[10] A statistical model for predicting thermal chemical reaction rate
Lin Zheng-Zhe (林正喆), Li Wang-Yao (李王尧), Ning Xi-Jing (宁西京). Chin. Phys. B, 2014, 23(5): 050501.
[11] A new coupled map car-following model considering drivers’ steady desired speed
Zhou Tong (周桐), Sun Di-Hua (孙棣华), Li Hua-Min (李华民), Liu Wei-Ning (刘卫宁). Chin. Phys. B, 2014, 23(5): 050203.
[12] Feedback control scheme of traffic jams based on the coupled map car-following model
Zhou Tong (周桐), Sun Di-Hua (孙棣华), Zhao Min (赵敏), Li Hua-Min (李华民). Chin. Phys. B, 2013, 22(9): 090205.
[13] A new coupled-map car-following model based on a transportation supernetwork framework
Yao Jing (姚静), Huang Jing-Yi (黄婧祎), Chen Guan-Rong (陈关荣), Xu Wei-Sheng (许维胜). Chin. Phys. B, 2013, 22(6): 060208.
[14] Environment-dependent continuous time random walk
Lin Fang(林方) and Bao Jing-Dong(包景东). Chin. Phys. B, 2011, 20(4): 040502.
[15] A mean-field approximation scheme containing the spatial parameter and its application to a surface-reaction-like cellular automaton model
Yu Zhong-Qiu (余仲秋), Zhang Zhen (张震), Zhang Bo-Tao (张波涛). Chin. Phys. B, 2002, 11(8): 771-775.
No Suggested Reading articles found!