Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050501    DOI: 10.1088/1674-1056/24/5/050501
GENERAL Prev   Next  

A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows

Li Kai (李凯), Zhong Cheng-Wen (钟诚文)
National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiple-relaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, whereas the modified single-relaxation-time (SRT) lattice Boltzmann scheme is applied for the evolution of potential energy distribution functions. The governing equations are discretized with the third-order Monotone Upwind Schemes for scalar conservation laws finite volume scheme. The choice of relaxation coefficients is discussed simply. Through the numerical simulations, it is found that compressible flows with strong shocks can be well simulated by present model. The numerical results agree well with the reference results and are better than that of the SRT version.

Keywords:  lattice Boltzmann method      multi-relaxation-time      compressible flow      finite volume method  
Received:  16 August 2014      Revised:  29 December 2014      Accepted manuscript online: 
PACS:  05.20.Dd (Kinetic theory)  
  47.11.Df (Finite volume methods)  
  47.40.-x (Compressible flows; shock waves)  
Fund: 

Project supported by the Innovation Fund for Aerospace Science and Technology of China (Grant No. 2009200066) and the Aeronautical Science Fund of China (Grant No. 20111453012).

Corresponding Authors:  Zhong Cheng-Wen     E-mail:  zhongcw@nwpu.edu.cn
About author:  05.20.Dd; 47.11.Df; 47.40.-x

Cite this article: 

Li Kai (李凯), Zhong Cheng-Wen (钟诚文) A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows 2015 Chin. Phys. B 24 050501

[1] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (1st edn.) (New York: Oxford University Press)
[2] Lim C Y, Shu C, Niu X D and Chew Y T 2002 Phys. Fluids 14 2299
[3] Toschi F and Succi S 2005 Europhys. Lett. 69 549
[4] Zhuo C and Zhong C 2013 Phys. Rev. E 88 053311
[5] Liu C F and Ni Y S 2008 Chin. Phys. B 17 4554
[6] Sun D K, Xiang N, Jiang D, Chen K, Yi H and Ni Z H 2013 Chin. Phys. B 22 114704
[7] Yu H, Girimaji S S and Luo L S 2005 Phys. Rev. E 71 016708
[8] Chen S 2009 Appl. Math. Comput. 215 591
[9] Zhuo C, Zhong C, Li K, Xiong S, Chen X and Cao J 2010 Commun. Comput. Phys. 8 1208
[10] Zhuo C and Zhong C 2013 Int. J. Heat Fluid Flow 42 10
[11] Inamuro T, Ogata T, Tajima S and Konishi N 2004 J. Comput. Phys. 198 628
[12] Premnath K N and Abraham J 2007 J. Comput. Phys. 224 539
[13] Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M and Yoshiyuki K 2012 Chin. Phys. B 21 124703
[14] Kang X Y, Ji Y P, Liu D H and Jin Y J 2008 Chin. Phys. B 17 1041
[15] Yi H H, Yang X F, Wang C F and Li H B 2009 Chin. Phys. B 18 2878
[16] Ji Y P, Kang X Y and Liu D H 2010 Chin. Phys. Lett. 27 094701
[17] Zhao M, Ji Z Z and Feng T 2004 Acta Phys. Sin. 53 671 (in Chinese)
[18] Zhong C, Xie J, Zhuo C, Xiong S and Yin D 2009 Chin. Phys. B 18 4083
[19] Zhuo C, Zhong C and Cao J 2012 Phys. Rev. E 85 046703
[20] Karlin I V, Ferrante A and Öttinger H C 1999 Europhys. Lett. 47 182
[21] Ansumali S, Karlin I V and Öttinger H C 2003 Europhys. Lett. 63 798
[22] Ginzburg I 2005 Adv. Water Resour. 28 1171
[23] Ginzburg I, Verhaeghe F and d'Humiéres D 2008 Commun. Comput. Phys. 3 427
[24] d'Humiéres D 1992 Prog. Astronaut. Aeronaut. 159 450
[25] Lallemand P and Luo L S 2000 Phys. Rev. E 61 6546
[26] Alexander F J, Chen S and Sterling J D 1993 Phys. Rev. E 47 R2249
[27] Qian Y H 1993 J. Sci. Comput. 8 231
[28] Chen Y, Ohashi H and Akiyama M 1994 Phys. Rev. E 50 2776
[29] Yan G, Zhang J, Liu Y and Dong Y 2007 Int. J. Numer. Meth. Fluids 55 41
[30] Sun C 1998 Phys. Rev. E 58 7283
[31] Sun C 2000 Phys. Rev. E 61 2645
[32] Sun C H 2000 Chin. Phys. Lett. 17 209
[33] Shi W, Shyy W and Mei R 2001 Numer. Heat Transfer, Part B 40 1
[34] Kataoka T and Tsutahara M 2004 Phys. Rev. E 69 056702
[35] Kataoka T and Tsutahara M 2004 Phys. Rev. E 69 035701
[36] Watari M 2007 Physica A 382 502
[37] He X, Chen S and Doolen G D 1998 J. Comput. Phys. 146 282
[38] Guo Z, Zheng C, Shi B and Zhao T S 2007 Phys. Rev. E 75 036704
[39] Li Q, He Y L, Wang Y and Tao W Q 2007 Phys. Rev. E 76 056705
[40] Li K and Zhong C 2015 Int. J. Numer. Meth. Fluids 77 334
[41] Zheng L, Shi B and Guo Z 2008 Phys. Rev. E 78 026705
[42] Chen F, Xu A, Zhang G, Li Y and Succi S 2010 Europhys. Lett. 90 54003
[43] Chen F, Xu A, Zhang G and Li Y 2011 Phys. Lett. A 375 2129
[44] Chen F, Xu A, Zhang G and Li Y 2011 Theor. Appl. Mech. Lett. 1 052004
[45] Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511
[46] Qu K 2009 Development of Lattice Boltzmann Method for Compressible Flows (Ph. D. Thesis) (Singapore: National University of Singapore)
[47] Mei R, Luo L S, Lallemand P and d'Humiéres D 2006 Comput. Fluids 35 855
[48] d'Humiéres D 2002 Philos. Trans. R. Soc. London, Ser. A 360 437
[49] Mei R and Shyy W 1998 J. Comput. Phys. 143 426
[50] Xi H, Peng G and Chou S H 1999 Phys. Rev. E 59 6202
[51] He Y L, Liu Q and Li Q 2013 Physica A 392 4884
[52] Patil D V 2013 Physica A 392 2701
[53] van Leer B 1979 J. Comput. Phys. 32 101
[54] Kermani M J, Gerber A G and Stockie J M 2003 4th Conference of Iranian Aerospace Society, January 27-29, Tehran, Iran
[55] van Albada G D, van Leer B and Roberts Jr W W 1982 Astron. Astrophys. 108 76
[56] Li Q, He Y L and Gao Y J 2008 Int. J. Mod. Phys. C 19 1581
[57] Guo Z, Zheng C and Shi B 2002 Chin. Phys. 11 366
[58] De Tullio M D, De Palma P, Iaccarino G, Pascazio G and Napolitano M 2007 J. Comput. Phys. 225 2098
[59] Belotserkovskii O M 1959 Flow Past a Circular Cylinder with a Detached Shock Wave (Technical Memorandum) (Wilmington: AVCO Corporation)
[60] Modesto-Madera N A 2011 A Numerical Study of Supersonic Flow Past a Circular Cylinder (MS Thesis) (Hartford: Rensselaer Polytechnic Institute)
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[8] An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods
Ling-Fa Kong(孔令发), Yi-Dao Dong(董义道)†, Wei Liu(刘伟), and Huai-Bao Zhang(张怀宝). Chin. Phys. B, 2020, 29(10): 100203.
[9] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[10] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[11] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[12] Achieving acoustic cloak by using compressible background flow
Ruo-Yang Zhang(张若洋), Qing Zhao(赵清), Mo-Lin Ge(葛墨林). Chin. Phys. B, 2016, 25(8): 084702.
[13] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[14] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[15] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
No Suggested Reading articles found!