Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014702    DOI: 10.1088/1674-1056/25/1/014702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

Hai-Qiong Xie(谢海琼)1,2, Zhong Zeng(曾忠)1,2,3, Liang-Qi Zhang(张良奇)1,2
1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China;
2. Department of Engineering Mechanics, Chongqing University, Chongqing 400044, China;
3. Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400044, China
Abstract  We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.
Keywords:  multi-relaxation-time lattice Boltzmann method      front-tracking method      surface tension      two-phase flow  
Received:  13 July 2015      Revised:  10 September 2015      Accepted manuscript online: 
PACS:  47.61.Jd (Multiphase flows)  
  05.20.Dd (Kinetic theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572062), the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR13248801), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13043), and Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences.
Corresponding Authors:  Zhong Zeng     E-mail:  zzeng@cqu.edu.cn

Cite this article: 

Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇) Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow 2016 Chin. Phys. B 25 014702

[1] Unverdi S O and Tryggvason G 1992 J. Comput. Phys. 100 25
[2] Hirt C W and Nichols B D 1981 J. Comput. Phys. 39 201
[3] Sussman M, Smereka P and Osher S J 1994 J. Comput. Phys. 114
[4] Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[5] Yi H H, Yang X F, Wang C F and Li H B 2009 Chin. Phys. B 18 2878
[6] Yi H H, Fan L J, Yang X F and Li H B 2009 Chin. Phys. Lett. 26
[7] Cai J and Huai X L 2009 Chin. Phys. Lett. 26
[8] Zhong C W, Xie J F, Zhou C S, Xiong S W and Yin D C 2009 Chin. Phys. B 18 4083
[9] Ran Z 2009 Chin. Phys. B 18 2159
[10] Mehravaran M and Hannani S K 2011 Scientia Iranica B 18 231
[11] Mehravaran M and Hannani S K 2008 Comput. Methods Appl. Mech. Engrg. 198 223
[12] Thommes G, Becker J, Junk M, Vaikuntam AK, Kehrwald D, Klar A, Steiner K and Wiegmann A 2009 J. Comput. Phys. 228 1139
[13] Becker J, Junk M, Kehrwald D, Thömmes G and Yang Z X 2009 Comput. Math. Appl. 58 950
[14] Lallemand P, Luo LS and Peng Y 2007 J. Comput. Phys. 226 1367
[15] Xie H Q, Zeng Z and Zhang L Q 2012 Chin. Phys. B 21 124703
[16] D'Humieres D 1992 Prog. Astronaut. Aeronaut. 159 450
[17] Lallemand P and Luo L S 2003 Phys.Rev. E 68 036706
[18] Lallemand P and Luo L S 2000 Phys. Rev. E 61 6546
[19] Kannan N, Premnath and John A 2007 J. Comput. Phys. 224 539
[20] McCracken M E and Abraham J 2005 Phys. Rev. E 71 036701
[21] Taylor G I 1932 Proc. R. Soc. Ser. A 138 41
[1] Impact mechanism of gas temperature in metal powder production via gas atomization
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Bo-Rui Du(杜博睿), Shi-Yuan Shen(申世远), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 054702.
[2] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[3] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[4] Approximate expression of Young's equation and molecular dynamics simulation for its applicability
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍). Chin. Phys. B, 2019, 28(1): 016801.
[5] Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
Zheng Fu(付峥), Shi-Yu Wu(吴士玉), Kai-Xin Liu(刘凯欣). Chin. Phys. B, 2016, 25(6): 064701.
[6] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
[7] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[8] Markov transition probability-based network from time series for characterizing experimental two-phase flow
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德). Chin. Phys. B, 2013, 22(5): 050507.
[9] Relation between Tolman length and isothermal compressibility for simple liquids
Wang Xiao-Song (王小松), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(3): 036801.
[10] Expressions of the radius and the surface tension of surface of tension in terms of the pressure distribution for nanoscale liquid threads
Yan Hong (闫红), Wei Jiu-An (魏久安), Cui Shu-Wen (崔树稳), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(12): 126801.
[11] Size-dependent surface tension of cylindrical nano-bubble in liquid Ar
Yan Hong (闫红), Zhu Ru-Zeng (朱如曾), Wei Jiu-An (魏久安 ). Chin. Phys. B, 2012, 21(8): 083102.
[12] Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension
Xie Hai-Qiong (谢海琼), Zeng Zhong (曾忠), Zhang Liang-Qi (张良奇), Liang Gong-You (梁功有), Hiroshi Mizuseki, Yoshiyuki Kawazoe. Chin. Phys. B, 2012, 21(12): 124703.
[13] A new method for the determination of surface tension from molecular dynamics simulations applied to liquid droplets
Zhu Ru-Zeng(朱如曾) and Yan Hong(闫红). Chin. Phys. B, 2011, 20(1): 016801.
[14] Thermodynamic theory of the Tolman's length
Zhu Ru-Zeng (朱如曾), Wang Xiao-Song (王小松). Chin. Phys. B, 2010, 19(7): 076801.
[15] Surface tension effects on the behaviour of a rising bubble driven by buoyancy force
Wang Han(王含), Zhang Zhen-Yu(张振宇), Yang Yong-Ming(杨永明), and Zhang Hui-Sheng(张慧生). Chin. Phys. B, 2010, 19(2): 026801.
No Suggested Reading articles found!